
Automatic Detection of Floating-Point Exceptions

Earl T. Barr Thanh Vo Vu Le Zhendong Su
Department of Computer Science, University of California at Davis

{etbarr, vo, vmle, su}@ucdavis.edu

Abstract
It is well-known that floating-point exceptions can be disastrous and
writing exception-free numerical programs is very difficult. Thus, it
is important to automatically detect such errors. In this paper, we
present Ariadne, a practical symbolic execution system specifically
designed and implemented for detecting floating-point exceptions.
Ariadne systematically transforms a numerical program to explicitly
check each exception triggering condition. Ariadne symbolically
executes the transformed program using real arithmetic to find
candidate real-valued inputs that can reach and trigger an exception.
Ariadne converts each candidate input into a floating-point number,
then tests it against the original program. In general, approximating
floating-point arithmetic with real arithmetic can change paths from
feasible to infeasible and vice versa. The key insight of this work
is that, for the problem of detecting floating-point exceptions, this
approximation works well in practice because, if one input reaches
an exception, many are likely to, and at least one of them will do
so over both floating-point and real arithmetic. To realize Ariadne,
we also devised a novel, practical linearization technique to solve
nonlinear constraints. We extensively evaluated Ariadne over 467
scalar functions in the widely used GNU Scientific Library (GSL).
Our results show that Ariadne is practical and identifies a large
number of real runtime exceptions in GSL. The GSL developers
confirmed our preliminary findings and look forward to Ariadne’s
public release, which we plan to do in the near future.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.4 [Software Engineering]:
Software/Program Verification — Reliability, Validation; D.2.5
[Software Engineering]: Testing and Debugging — Symbolic exe-
cution; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms Algorithms, Languages, Reliability, Verification

Keywords Floating-point exceptions; symbolic execution

1. Introduction
On June 4, 1996, the European Space Agency’s Ariane 5 rocket
veered off course and self-destructed because the assignment of
a floating-point number to an integer caused an overflow [40].
The loss is estimated to have been US$370 million. Scientific
results increasingly rest on software that is usually numeric and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright © 2013 ACM 978-1-4503-1832-7/13/01. . . $15.00

may invalidate results when buggy [33]. In February 2010, Toyota
implicated control software in its spate of brake failures [3]. Haptic
controllers are being used for remote surgery [36]. Numerical
software, which uses floating-point arithmetic, is prominent in
critical control systems in devices in national defense, transportation,
and health care. Clearly, we are increasingly reliant on it.

Floating-point numbers are a finite precision encoding of real
numbers. Floating-point operations are not closed and may throw
exceptions: their result may have an absolute value greater than
the largest floating-point number and overflow; it may be nonzero
and smaller than the smallest nonzero floating-point number and
underflow; or it may lie between two floating-point numbers, require
rounding, and be inexact. Dividing-by-zero and the invalid appli-
cation of an operation to operands outside its domain, like taking
the square root of a negative number, also generate exceptions. The
IEEE 754 standard defines these exceptions [24].

Writing numerical software that does not throw floating-point
exceptions is difficult [19, 22]. For example, it is easy to imagine
writing if (x != y){ z = 1 / (x-y); } and then later con-
tending with the program mysteriously failing due to a spurious
Divide-by-Zero [19]. As another example, consider a straightfor-
ward implementation to compute the 2-norm of a vector [22, 23]:

sum = 0;
for (i = 0; i < N; i++)
sum = sum + x[i] * x[i];

norm = sqrt(sum);

For many slightly large or small vector components, this code may
overflow or underflow when evaluating x[i]*x[i] or adding the
result to sum. In spite of exceptions during its computation, the
norm itself may, nonetheless, be representable as an unexceptional
floating-point number. Even when some exceptions are caught and
handled, others may not be; these are uncaught exceptions. The
Divide-by-Zero in the first example is an uncaught exception.

Symbolic analysis has been successfully used to test and validate
software [7, 18, 38]. However, little work has considered symbolic
analysis of floating-point code, although much work has pursued
formalizing IEEE floating-point standards in various proof systems
such as Coq, HOL, and PVS. One natural approach is to equip a
satisfiability modulo theory (SMT) solver with a theory for floating-
point. This has proved to be a challenging problem; ongoing efforts
simplify and deviate from the IEEE floating-point standard [37].

For detecting floating-point exceptions, our core insight is that, if
an exception can occur at a particular operation, then that exception
defines a neighborhood in which exception-triggering inputs are
numerous. If one of these inputs triggers the exception over the
reals, then another is likely to do so over floating-point arithmetic.
Guided by this insight, we propose to symbolically execute a
numeric program over the reals to search for an exception-triggering
input. To this end, we transform a numeric program to explicitly
check the operands of each floating-point operation before executing
it. If a check fails, the transformed program signals the floating-

point exception that would have occurred if the guarded operation
had executed, then terminates. In the transformed program, the
constraints are over real, not floating-point numbers, so we can
directly feed them into an SMT solver equipped with the theory
of reals, such as Microsoft’s Z3 [9]. If we can reach any of these
injected program points, we can query the SMT solver for an input
that triggers that exception. This input is unlikely to be a floating-
point number, so we search the neighborhood of that input for a
candidate floating point number that also triggers the exception over
real arithmetic. To undo the inaccuracy of symbolic execution over
the reals, we then test that candidate against the original program,
concretely executed over floating-point arithmetic.

Our approach, which we have christened Ariadne, automatically
detects floating-point exceptions. While not all exceptions are bugs,
the utility of Ariadne rests on three observations: 1) over- and under-
flows can be disastrous, as the loss of the Ariane 5 demonstrates;
2) the GSL developers confirmed as bugs several of the exceptions
Ariadne found; and 3) Invalid and Divide-by-Zero exceptions are
likely to be bugs. Ariadne reports only real exceptions: when it
reports inputs that cause a program to throw a particular floating-
point exception, that program run on those inputs will certainly
throw that exception. When Ariadne finds an exception, developers
can use the inputs to fix the bug and to construct a test case to add
to their test suite.

To realize Ariadne, we extended the symbolic execution engine
KLEE [7] to use Z3 (version 3.1) as its SMT solver instead of
STP [16], which does not support the theory of reals. Interesting
numeric code often results in multivariate, nonlinear constraints.
In particular, the constraints we encountered while analyzing the
GNU Scientific Library, were usually multivariate and nonlinear
(Section 5). We fed these constraints to iSAT, the state of the art non-
linear SMT solver [13], but it only handled less than 1%, rejecting
most of our constraints because they contain large constant values
that exceed iSAT’s bounds. We also directly gave them to Z3, which
had recently added support for multivariate, nonlinear constraints
but it could only handle a small percentage. These results motivated
us to devise a novel, practical method for handling nonlinear con-
straints involving rational functions (to support division), which we
also incorporated into KLEE; this method works effectively over
the constraints arising in our problem setting. A new algorithm for
solving nonlinear constraints, realized in a prototype called nlsat,
was developed concurrently with our work and added to Z3 [25]. We
ran nlsat on 10,000 of our constraints, uniformly selected at random,
and compared its performance to that of our solver, Z3-ARIADNE
(Section 5). Z3-ARIADNE resolved 9,119 of the constraints (5,510
being satisfiable), while nlsat resolved 5,248 of the constraints, and
returned unknown, timed out, or had parse errors on the rest.

Our contributions follow:

• The insight that, for the problem of detecting floating-point ex-
ceptions, real arithmetic can effectively model floating-point
arithmetic, since when one input triggers a floating-point excep-
tion, many are likely to do so and, of those, some will do so over
both real and floating-point arithmetic;

• An LLVM and KLEE-based implementation of our technique
and its evaluation on the GNU Scientific Library (GSL);

• A tool that automatically converts fixed precision numeric
code into arbitrary precision numeric code to detect potentially
avoidable overflows and underflows; and

• A practical method for handling nonlinear constraints involving
rational functions over the reals.

We evaluated our tool on the GNU Scientific Library (GSL)
version 1.14. We analyzed all functions in the GSL that take scalar
inputs, which include elementary and many differential equation

1 double av1(double x, double y) {
2 return (x+y)/2.0;
3 }

5 double av2(double x, double y) {
6 return x/2.0 + y/2.0;
7 }

9 double av3(double x,double y) {
10 return x + (y-x)/2.0;
11 }

13 double av4(double x, double y) {
14 return y + (x-y)/2.0;
15 }

17 double average(double x, double y) {
18 int samesign;
19 if (x >= 0) {
20 if (y >=0)
21 samesign = 1;
22 else
23 samesign = 0;
24 } else {
25 if (y >= 0)
26 samesign = 0;
27 else
28 samesign = 1;
29 }
30 if (samesign) {
31 if (y >= x)
32 return av3(x,y);
33 else
34 return av4(x,y);
35 } else
36 return av1(x,y);
37 }

Figure 1: Sterbenz’ average function.

functions. Across the 467 functions we analyzed, our tool discovered
inputs that generated 2091 floating-point exceptions. 91.9% of these
are Underflows and Overflows, while the remainder are Divide-by-
Zero and Invalid exceptions. Some of these exceptions are highly
nontrivial, as a particular Divide-by-Zero we describe in detail in
Section 5.2 illustrates. We reported preliminary results to the GSL
community; they confirmed that our warnings were valid and look
forward to the public release of our tool. These results show that
modeling floating-point numbers as reals to find exceptions is a
sweet spot in the trade-off between practicality and precision.

To motivate and clarify our problem, Section 2 presents and
explains numerical code that contains floating-point exceptions. We
open Section 3 with terminology, then describe the two transfor-
mations on which Ariadne rests: the first reifies the exceptions a
floating-point operation may throw into program points and the
second symbolically handles external functions. We close Section 3
with the algorithms we use to solve multivariate, nonlinear con-
straints. Section 4 describes the realization of Ariadne. In Section 5,
we present the results of analyzing the GSL special functions with
Ariadne. We discuss closely related work in Section 6 and conclude
in Section 7.

2. Illustrative Example
Floating-point arithmetic is unintuitive. Sterbenz [39] illustrates this
fact by computing x+y

2 , the average of two numbers. Even for a
“simple” function like this, it requires considerable knowledge to

1 int gsl_sf_bessel_Knu_scaled_asympx_e(
2 const double nu, const double x,
3 gsl_sf_result * result
4) { /* x >> nu*nu+1 */
5 double mu = 4.0*nu*nu;
6 double mum1 = mu-1.0;
7 double mum9 = mu-9.0;
8 double pre = sqrt(M_PI/(2.0*x));
9 double r = nu/x;

10 result->val = pre * (1.0 + mum1/(8.0*x)
11 + mum1*mum9/(128.0*x*x));
12 result->err = 2.0 * GSL_DBL_EPSILON
13 * fabs(result->val)
14 + pre * fabs(0.1*r*r*r);
15 return GSL_SUCCESS;
16 }

Figure 2: A function from GSL’s special function collection.

implement it well. The four functions av1–4 in Figure 1 are a few
possible average formulas. They are all equivalent over the reals, but
not over floating-point numbers. For instance, av1 overflows when
x and y have the same sign and are sufficiently large, and av2 is inac-
curate and requires a second expensive division. Sterbenz performs
a very interesting analysis of this problem and defines average that
uses av1, av3, and av4 according to the signs of the inputs x and y.
Sterbenz proved average to be free of overflows. Our tool Ariadne
explores all the paths in average and does not find any overflows,
as expected. To run Ariadne, we issue “ariadne sterbenz.c”
at the command line to compile and apply the operand checking,
explicit floating-point exception transformation, then symbolically
execute the result to produce sterbenz.out, which contains
the analysis results. Ariadne discovers 6 underflows, reporting, for
example x = -3.337611e-308 and y = 2.225074e-308, as an
input pair that triggers this exception at line 2.

We close with a function that contains each of the four floating-
point exceptions Ariadne detects, drawn from our test corpus, the
GSL special functions. Figure 2 contains the GSL’s implementation
of gsl_sf_bessel_Knu_scaled _asympx_e. Run on this func-
tion, Ariadne reports that the square-root operation at line 8 throws
an Invalid exception when x < 0 and a Divide-by-Zero when x
= 0. When nu = -5.789604e+76 and x = 2.467898e+03, the
evaluation of mum1*mum9 at lines 10–11 overflows. Finally, when
nu = -7.458341e-155 and x = 2.197413e+03, the evaluation
of mu = 4.0*nu*nu at line 5 underflows.

3. Approach
Figure 3 depicts the architecture of Ariadne, which has two main
phases. Phase one transforms an input numeric program into a
form that explicitly checks for floating-point exceptions before each
floating-point operation and, if one occurs, throws it and terminates
execution. The transformed program contains conditionals, such as
x > DBL_MAX, that cannot hold during concrete execution, where
DBL_MAX denotes the maximum floating-point value. The trans-
formed program, including its peculiar conditionals, are amenable
to symbolic execution and any program point that symbolic execu-
tion reaches without throwing an exception has the property that
none of its floating-point variables contain a special value, such as
NaN (Not a Number) or ∞. Thus, the numeric constraints generated
during symbolic execution involve those floating-point values that
are a subset of R and suitable input to an SMT solver supporting the
theory of reals. During phase two, Ariadne symbolically executes the
transformed program, and for each path that reaches a floating-point
exception injected in phase one, it attempts to solve the correspond-
ing path constraint. If a satisfying assignment is found, Ariadne

Exception Example Default Result

Overflow |x+ y|> Ω ±∞

Underflow |x/y|< λ Subnormals
Divide-by-Zero x/0 ±∞

Invalid 0/0,0×∞,
√
−1 NaN

Inexact nearest(x op y) 6= x op y Rounded result

Table 1: Floating-point exceptions; x,y ∈ F [23, §2.3].

attempts to trigger the exception in the original code. If it succeeds,
Ariadne reports the assignment as a concrete input that triggers the
exception. Our symbolic execution is standard; the key challenge
in its realization is how to effectively solve the collected numerical
constraints, many of which are multivariate, nonlinear.

We first present pertinent background in numerical analysis and
introduce notation (Section 3.1), then describe our transformation
(Section 3.2) and how we solve numerical constraints (Section 3.3).

3.1 Background and Notation
Four integer parameters define a floating-point number system
F⊂ R: the base (radix) β , the precision t, the minimum exponent
emin, and the maximum exponent emax. With these parameters and
the mantissa m ∈ Z and the exponent e ∈ Z,

F= { ±mβ
e−t | (0≤ m≤ β

t −1∧ emin ≤ e≤ emax)

∨ (0 < m < β
t−1∧ e = emin) }

The floating-point numbers for which β t−1 ≤ m≤ β t ∧ emin ≤ e≤
emax holds are normal; the numbers for which 0≤ m < β t−1∧ e =
emin holds are subnormal [23, §2.1]. Ω= β emax(1−β−t) denotes the
maximum floating-point number; −Ω, the minimum. λ = β emin−1

is the smallest normalized floating-point number; æ = β emin−t is the
smallest denormalized.

Floating-point operations can generate exceptions shown in
Table 1. Some applications of the operations on certain operands
are undefined and cause the Divide-by-Zero and Invalid exceptions.
Finite precision causes the rest. Inexact occurs frequently [19, 26]
and is often an unavoidable consequence of finite precision. For
example, when dividing 1.0 by 3.0, an Inexact exception occurs
because the ratio 1/3 cannot be exactly represented as a floating-
point number. For this reason, Ariadne focuses on discovering
Overflow, Underflow, Invalid, and Divide-by-Zero exceptions.

Throughout this section, we abuse Q to denote its arbitrary
precision subset. Let fp : Q→ F convert a rational into the nearest
floating-point value, rounding down. For next : F×F→ F, next(x,y)
returns the floating-point number next to x in the direction of y.

To model path constraints, we consider formulas φ in the theory
of reals. For a formula φ , fv(φ) =~x denotes the free variables in φ .
We use S to denote satisfiable or SAT; S̄ to denote unsatisfiable or
UNSAT; and U for UNKNOWN. Below, we define algorithms that
return satisfying bindings to variables or UNSAT or UNKNOWN.
For this purpose, we define An

F = (V ×F)n]{S̄,U} to be a disjoint
union that is either an n length vector of simultaneous assignments
over F to the variables V , or is UNSAT or UNKNOWN. For ISSAT:
An
F→ B, ISSAT(a) returns true if a /∈ {S̄,U}.

3.2 Program Transformation
We first define T , the term rewriting system we use to inject explicit
floating-point exception handling into numeric code. For simplicity
of presentation, we assume that nested arithmetic expressions
have been flattened. We assume that the program terminates after
throwing a floating-point exception.

Input Code
(C, C++,
Fortran)

Reify FP
Exceptions

Symbolic
Execution

SMT
Solver

Exception
Triggering

Inputs

Constraints
Over ℝ

Input Code
 + Explicit FP
Exceptions

Figure 3: The architecture of Ariadne.

3.2.1 Basic Arithmetic Operations
The operator � ∈ {+,−,∗}, and variables x and y bind to floating-
point expressions. We have the following local rewriting rules:

T (x� y) =

 Overflow if |x� y|> Ω

Underflow if 0 < |x� y|< λ

x� y otherwise

T (x / y) =


Invalid if x = 0∧ y = 0
Divide-by-Zero if x 6= 0∧ y = 0
Overflow if |x|> |y|Ω
Underflow if 0 < |x|< |y|λ
x / y otherwise

We also have a global contextual rewriting rule T (C[e]) =C[T (e)],
where e denotes an expression of the form x� y or x / y, and C[·]
denotes a program context. Ignoring time-dependent behavior, it is
evident that JpK = JT (p)K when the numeric program p terminates
without throwing a floating-point exception, where J·K denotes the
semantics of its operand.

Figure 4a shows a concrete example of how T , specialized to C,
transforms a subtraction expression (line 6 of example in Figure 2).
The result of the subtraction is checked and, if an exception could
occur, execution terminates. The division transformation, depicted
in Figure 4b, is the most involved transformation. The original
expression is taken from line 9 of the example in Figure 2. A floating-
point division operation can throw four distinct exceptions, each of
which the transformed code explicitly checks. For instance, given
the inputs nu = 0.0 and x = 0.0, the original expression would
have terminated normally and returned NaN, but the transformed
code would detect and output an Invalid exception, then terminate.

3.2.2 Elementary Mathematical Functions
Calls into an unanalyzed library usually terminate symbolic exe-
cution. Calls to elementary mathematical functions, such as sqrt,
log, exp, cos, sin and pow, are frequent in our constraints.
These functions are often handled in hardware, like sqrt. We next
describe simple, yet effective, transformations to deal with these
functions. Indeed, during our experiments, these transformations en-
abled us to find approximately 41% of the floating-point exceptions
we report. When all of an elementary function’s operands are within
its domain, these well-tested, ubiquitous functions do not return
specials. To handle an unanalyzed elementary function, therefore,
we insert checks that its operands are in its domain and signal the
appropriate exception if a check fails, then bind a fresh symbolic
variable to the call. These symbolic variables are dependent, since
they depend on other symbolic variables. Input symbolic variables
are independent.

We add the obvious constraints on the range of dependent vari-
ables. For instance, we add the constraint d2 = x, for sqrt, which

1 double z = mu - 1.0;
2 double abs1 = fabs(z);
3 if (DBL_MAX < abs1) {
4 perror("Overflow!\n");
5 exit(1);
6 }
7 if (0 < abs1 && abs1 < DBL_MIN) {
8 perror("Underflow!\n");
9 exit(1);

10 }
11 double mum1 = z;

(a) Subtraction (line 6 of example in Figure 2).

1 if (x == 0) { // denominator is zero
2 if (nu == 0) {
3 perror("Invalid!\n");
4 } else {
5 perror("DivZero!\n");
6 }
7 exit(1);
8 }
9 double abs1 = fabs(nu);

10 double abs2 = fabs(x);
11 if (abs1 > abs2 * DBL_MAX) {
12 perror("Overflow!\n");
13 exit(1);
14 }
15 if (0 < abs1 && abs1 < abs2 * DBL_MIN) {
16 perror("Underflow!\n");
17 exit(1);
18 }
19 double r = nu/x;

(b) Division (line 9 of example in Figure 2).

Figure 4: Ariadne transformations realized in C: Ariadne symbol-
ically executes this code over arbitrary precision rationals, where
the conditionals can be tested; fabs returns the absolute value of a
double.

has a polynomial representation, as shown in Figure 5. On line 8 of
the example in Figure 2, we replace the call to sqrt with the fresh
symbolic variable d and add the constraint d2 = M_PI/(2.0 ∗ x).
A dependent symbolic variable can depend on another dependent
variable, as when log(log(x)) is encountered. Dependent vari-
ables allow us to defer a call’s evaluation until that variable appears
in a path constraint that we feed to the solver. The binding of a
dependent variable to a function call is recorded in a table, for use
during its evaluation, when we concretize a dependent variable and
the variables on which it depends (Section 3.3.1). Table 2 shows
the contents of the dependent symbolic variable table when the

T (sqrt(x)) =

{
Invalid if x < 0
d, where d ·d = x otherwise

T (exp(x)) =

 Overflow if x > log(Ω)
Underflow if x < log(λ)
d otherwise

T (log(x)) =

{
Invalid if x≤ 0
d otherwise

T (cos(x)) = d where −1≤ d ≤ 1
T (sin(x)) = d where −1≤ d ≤ 1

T (pow(x,y)) =

{
Invalid if x = 0∧ y≤ 0
d otherwise

Figure 5: Rewriting rules for elementary mathematical functions.

Dependent variable Expression

d0 sin(x
y)

d1 log(x2 + 1
x)

Table 2: A dependent symbolic variable table.

transformation encounters sin(x
y) and log(x2 + 1

x), which use the
independent variables x, y. In Figure 5, we rewrite calls to pow
to throw Invalid if its operands are outside its domain. Our rewrit-
ing of pow could make additional checks for exceptions, such as
y > 0∧ ylog(x)> log(Ω), but we found the described handling
of pow and the other elementary functions to be very effective over
the functions we analyzed.

3.3 Solving Numeric Constraints
Designing SMT solvers that can effectively support multivariate,
nonlinear constraints over the reals is an active area of research. Off-
the-shelf SMT solvers focus on linear constraints and do not support
general nonlinear constraints over the real domain because linear
constraints are prevalent in integer programs and solving nonlinear
constraints is very expensive (although decidable over the reals).
However, real-world numeric applications contain many nonlinear
constraints. In our experiment over the GSL special functions, 81%
of queries are nonlinear, 73% are multivariate and 62% are both
nonlinear and multivariate.

Algorithm 1 is the Ariadne solver for floating-point exceptions.
During symbolic execution, it is called to solve the numeric path
constraints to the program points that represent exceptions, injected
during the program transformation (Section 3.2). In addition to the
path constraint φ , the Ariadne exception solver takes T , the depen-
dent symbolic variable table built during the transformation phase
(Section 3.2.2), p, the original, untransformed numeric program
itself, the possible exception e, and l, the location (program point)
in p of the operation that may throw e.

To solve φ , Algorithm 1 first checks whether φ contains any
multivariate numerical constraints. It it does, Algorithm 1 con-
cretizes φ using T to convert φ into a univariate formula. On line
5, it calls the CONCRETIZE method, which interacts with the un-
derlying SMT solver to bind variables that appear in multivari-
ate numeric constraints to values in F (Section 3.3.1); it returns
φc with the selected variables replaced with concrete values and
~ac, which records those variable to value bindings. Algorithm 1
calls SOLVEUNIVARIATE (Algorithm 2) to solve a univariate for-
mula. When SOLVEUNIVARIATE finds a satisfying assignment, Al-
gorithm 1 returns the bindings from the calls to both CONCRETIZE

Algorithm 1 ARIADNESOLVE: Φ×T×P×E×N→ An
F solves

a numeric path constraint over the reals. This topmost algorithm
handles formulae that contain multivariate numerical constraints.
When φ contains such a constraint, the solver tries various con-
cretizations up to its MAX_CONCRETIZATIONS bound. Note that
n = |fv(φ)|, for φ ∈Φ.
inputs φ ∈Φ, a numeric constraint from p.

T ∈ T, a table of dependent symbolic variables.
p ∈ P, the numeric program under analysis.
e ∈ E, the potential exception.
l ∈ N, the location of e.

ISMULTIVARIATE : Φ→ B returns true when passed a formula
that contains a multivariate numerical constraint.

1: if ¬ISMULTVARIATE(φ)∧|T |= 0 then
2: return SOLVEUNIVARIATE(φ ,〈〉, p,e, l) // Algorithm 2
3: else
4: for 1..MAX_CONCRETIZATIONS do
5: φc,~ac := CONCRETIZE(φ ,T) // Algorithm 3
6: ~a := SOLVEUNIVARIATE(φc,~ac, p,e, l) // Algorithm 2
7: if ISSAT(~a) then
8: return ~a
9: end if

10: end for
11: return U // Return UNKNOWN.
12: end if

Algorithm 2 SOLVEUNIVARIATE: Φ×An
F×P×E×N→ An

F lin-
earizes nonlinear univariate constraints in φ , finds a floating-point
solution to the resulting constraints, then checks whether a satisfying
solution triggers the given exception at the specified location.
inputs φ ∈Φ, a formula whose numeric constraints are univariate.

~ac ∈ An
F, the concretized bindings.

p ∈ P, the numeric program under analysis.
e ∈ E, the potential exception.
l ∈ N, the location of e.

1: φ ′ := LINEARIZE(φ) // Algorithm 4
2: ~a :=~ac + SOLVEOVERF(φ ′) // Algorithm 5
3: if ISSAT(~a)∧ p(~a) does not throw e at l then
4: return U // Return UNKNOWN.
5: end if
6: return ~a

and SOLVEUNIVARIATE. Algorithm 1 tries different concretizations
up to MAX_CONCRETIZATIONS times. Our experiments validate
our core insight that, if an exception is reachable, many inputs reach
it: varying MAX_CONCRETIZATIONS did not greatly change
Ariadne’s detection rate (See Section 5.1).

To convert a nonlinear univariate formula into a linear formula,
Algorithm 2 applies a linearization technique that finds the roots of
each nonlinear polynomial constraint, then rewrites the constraints
into an equivalent disjunction of interval checks (Section 3.3.2).
When φ is linear, φ ′ = φ . While φ ′ is univariate and linear upon
input to SOLVEOVERF on line 2, it remains a formula in the theory
of reals, so the underlying SMT solver, used in CONCRETIZE in
Algorithm 1 and here in the SOLVEOVERF function, may return a
solution in Q\F. The SOLVEOVERF algorithm (Section 3.3.3) finds
a floating-point solution in Fn for its input, if one exists.

The SOLVEOVERF function’s solution reaches and triggers an
exception when symbolically executed using real arithmetic, but
may not when concretely executed using floating-point arithmetic.
For instance, consider “if(x+1 > Ω) Overflow”. The binding x = Ω

is valid solution in the theory of reals and SOLVEOVERF can return

it, since x∈F. Under concrete execution with standard floating-point
semantics, however, the difference in magnitude of the operands
means that the result of the addition operation must be truncated to
fit into the finite precision of floating-point which “absorbs” the 1
into x’s value of Ω. Under floating-point arithmetic, this Overflow
is unreachable and the binding produced during symbolic execution
is a false positive. Approximating floating-point arithmetic with real
arithmetic can also produce false negatives, again due to rounding.

Thus, each satisfying solution SOLVEOVERF produces is a can-
didate solution that Ariadne must concretely check. In Algorithm 2,
line 3 performs the requisite concrete check over floating-point.
Here, the Ariadne exception solver executes p on the candidate
satisfying assignments — both those found by SOLVEOVERF and
~ac from concretization — to determine whether p actually throws
the e at l, the location of the floating-point operation under scrutiny.

Ariadne is certainly correct when it reports that executing a pro-
gram on an input vector throws a particular floating-point exception
at a particular operation. However, Ariadne cannot guarantee that
a program is exception-free, for three reasons: it 1) approximates
floating-point semantics with constraints over the reals, which no-
tably ignore rounding (i.e. Inexact); 2) concretizes multivariate into
univariate constraints; and 3) rewrites loop conditions to bound the
number of iterations. The decision to approximate floating-point
arithmetic with real arithmetic is the core design decision of this
work. This decision favors practicality in the trade-off between prac-
ticality and precision; it allows us to use off-the-shelf SMT solvers,
such as Z3. It is also what necessitates the concrete execution check
to confirm that a path to an exception is indeed satisfiable; it also
means that we may fail to detect exceptions. That said, deployed
numerical software is usually robust, i.e. small changes in its in-
put cause small changes in its output, so error accumulation due
to rounding is typically small. Thus, an “ideal” execution over the
reals should closely approximate the actual execution over floating-
point, especially for invalid, overflow and underflow exceptions.
Concretization means that Ariadne might abandon a path as unsatis-
fiable, when that path is, in fact, satisfiable and contains exceptions;
analyzing programs with externally imposed loop bounds also means
that Ariadne may fail to explore paths that contain exceptions. All
of these cases mean that Ariadne may miss exceptions. In spite
of these limitations, Ariadne is an effective testing technique that
detects many floating-point exceptions, as our results in Section 5
demonstrate. In particular, we empirically show that concretization
is quite effective in our setting (Section 5.1).

3.3.1 Concretization
Before querying its SMT solver in Algorithm 1, Ariadne must

convert multivariate to univariate polynomial constraints and can
no longer defer the concrete evaluation of elementary functions, in
the form of dependent symbolic variables. Algorithm 3 takes the
input formula φ and the analyzed program’s dependent symbolic
variable table T and handles these two problems. The algorithm first
identifies VT , the dependent variables that appear in both T and φ ,
then the independent variables on which they depend. We define
VT to avoid needlessly concretizing independent variables whose
dependent variables do not appear in φ . Algorithm 3 then identifies
all the independent variables that appear in a multivariate, numeric
constraint in φ and not in VT . Then it builds and topologically sorts
the DAG G to concretize the variables in G so that it has all the
information it needs to evaluate the expressions in T .

On line 8, the choose function nondeterministically selects an
element from a set, but could be defined to implement an arbitrary
selection policy, such as selecting the free variable with the highest

Algorithm 3 CONCRETIZE : Φ× T → Φ× An−1
F builds a DAG

that contains the symbolic variables that appear in multivariate
numeric constraints and all variables in T , then concretizes them in
topological sort order. The CONCRETIZE function must process T ,
because Ariadne can no longer defer handling elementary functions,
since it is about to query the underlying SMT solver.
inputs φ , a numeric constraint.

T , a dependent symbolic variable table.
1: ~a := 〈〉 contains concretized variable bindings.
2: Dφ = fv(φ)∩{d | (d,e) ∈ T} is the set of dependent symbolic

variables in T that appear in φ .
3: VT = Dφ ∪{v | d ∈ Dφ ∧ (d,e) ∈ T ∧ v ∈ fv(e)} is the set of

dependent symbolic variables in T and the variables on which
they depend that appear in φ .

4: Mφ = {m | m is a multivariate, numeric constraint in φ ∧
|fv(m)\VT |> 1} is the set of multivariate, numeric constraints
in φ that will remain multivariate after T has been concretized.

5: Im =
⋃

m∈Mφ
fv(m) \VT is the set of independent variables in

Mφ that will remain after T has been concretized.
6: Iu := /0 is the set of variables that will remain symbolic after the

constraints in Mφ have either been converted to univariate or
entirely concretized.

7: while Mφ 6= /0 do // Greedily approximate the hitting set of Mφ .
8: Iu := Iu∪ choose(fv(m)\VT), for some m ∈Mφ

9: Mφ := {c | c ∈ Mφ ∧ fv(c)∩ Iu = /0} // Remove those con-
straints covered by the choice made in the previous line.

10: end while
11: G = (V,E), where V = VT ∪ Im \ Iu and (u,v) ∈ E when v

depends on u, i.e. u ∈ fv(T (v)).
12: ∀x ∈ TOPOSORT(G) do
13: if INDEGREE(x)= 0 then // Independent symbolic variables.
14: c := BINDVARIABLE(φ ,x)
15: return φ ,U if c =U
16: else // Dependent symbolic variables.
17: c := EVAL(T (x),~a)
18: end if
19: ~a :=~a+(x,c)
20: φ := φ [c/x]
21: end for
22: return φ ,~a

degree or that appears most often1. Since Iu is a greedy over-
approximation of the hitting set of variables in the multivariate
numeric constraints in φ , Algorithm 3 may over-concretize, as when
φ contains three multivariate constraints and Algorithm 3 picks
variables to concretize in the first two that completely concretize the
third constraint. When this happens, we simply hope to do better in
a subsequent call to CONCRETIZE in Algorithm 1.

The fact that concretization is quite effective in our setting
supports our core insight: in practice, our constraints either have
no solution or many. Our symbolic variables are defined over
intervals; if an input triggers an exception, there will almost always
be many such inputs. An experiment in Section 5.1 demonstrates
the robustness of our concretization results.

To clarify the presentation, we introduce the helper function
CHECKBINDING: Φ×V ×F→ B to check that a candidate bind-
ing does not trivially falsify a formula. For the call CHECKBIND-
ING(φ ,x,c), we have
∀φi ∈ φ do

return false if EVALEXPR(φi[c/x]) = false

1 Preliminary experiments using degree or count of occurrences did not
outperform uniform selection.

Algorithm 4 LINEARIZE: Φ→Φ rewrites a nonlinear polynomial
constraint into an equivalent disjunction of linear interval predicates.
Here, polysolver is a placeholder for any polynomial solver; our
implementation uses the one in the GSL-1.14 (Section 4).
input φ =

∧
ci, a univariate numeric path constraint.

∀ci ∈ φ do // All constraints in φ .
if ci = R(x)≺ 0∧degree(R(x))> 1 then
{x1,x2, · · · ,xn, · · · ,xm}= polysolver(R(x))
{x1,x2, · · · ,xn} are the distinct real roots of R(x)
I = (∞,x1), · · · ,(xn,∞), where xi < x j when i < j.
I− is those intervals in which R(x)< 0.
I+ is those intervals in which R(x)> 0.
eq :=

∨n
i=1 x = xi

lt :=
∨

i∈I− x ∈ i
gt :=

∨
i∈I+ x ∈ i

ψ := match ≺ with
=→ eq
| <→ lt
| >→ gt
|≤ → eq ∨ lt
|≥ → eq ∨ gt

φ := φ [ψ/ci]
end if

end for
return φ

end for
return true
The φi[c/x] notation means to rewrite every appearance of x in φi

with c. The function EVALEXPR walks the expression tree that results
from the substitution and evaluates constant expressions. It returns
false if the recursive evaluation of constant expressions reduces the
expression tree to false. For example, consider the simple numeric
constraint 5x > 0: EVALEXPR would return false for any assignment
to x less than or equal to zero and true otherwise. Its complexity is
O(n), where n is the number of nodes in the expression tree. The
function CHECKBINDING checks a single binding; to test a bounded
number of bindings, we define BINDVARIABLE: Φ×V → F∪{U}:

for 1..MAX_BINDINGS do
c := RANDOM(dom(x))
return c if CHECKBINDING(φ ,x,c)

end for
return U // Return UNKNOWN.
In our setting, topological sort means that the condition at line 13

will be true until all the independent symbolic variables that appear
in an expression in T are exhausted, at which point the condition
will always be false and dependent variables will be processed. At
line 17, we evaluate the expression T (x) in the context of~a to find a
concrete binding for x. For example, consider T (x) = log(y2 + 1

y)

in Table 2. When y is concretized to 1, x = log(2) = 1.
Algorithm 3 may convert φ into a ground formula, i.e., a

formula with no free variables. When this happens, LINEARIZE
echoes the ground formula and SOLVEOVERF returns true or
false via S̄. Otherwise, Algorithm 3 returns a rewritten φ that
contains no multivariate numeric constraints. During the topological
sort, Algorithm 3 calls EVALEXPR for each independent symbolic
variable over expression trees whose maximum number of nodes
is bounded by φ . For each dependent variable, we must evaluate
its corresponding expression, at cost α . Thus, the complexity of
Algorithm 3 is O(|I||φ |+ |D|α + |E|), where V = I∪D.

3.3.2 Linearizing Univariate Nonlinear Constraints

x < r0

r0 r1

x = r0 r0 < x < r1 x = r1 x > r1

Figure 6: The roots of the univariate polynomial constraint R(x) =
(x− r0)(x− r1) define intervals that determine its sign.

Given a univariate, nonlinear constraint, we transform it into a
disjunction of linear constraints, suitable for an off-the-shelf SMT
solver. Algorithm 4 linearizes a formula in the theory of reals into
an equivalent formula by replacing each comparison involving a
nonlinear polynomial with an equivalent linear disjunction.

Figure 6 gives the high-level intuition that underlies this lin-
earization. The roots of R(x) = (x− r0)(x− r1) define intervals that
determine its sign, as shown in the figure. We simply need to encode
the intervals that the roots define and the sign of R(x) when x falls
into each interval into disjunctive linear constraints. To form these in-
tervals, we must find the roots of a univariate polynomial constraint.
Thus, the complexity of Algorithm 4 is quadratic. The correctness
of the technical details of this rewriting rests on Lemma 3.1, which
we present next.

Lemma 3.1. For a rational function f (x) = P(x)
Q(x) where x∈R, there

exists a polynomial R(x) of degree m whose n≤m distinct real roots
x1, · · · ,xn define n+1 intervals that can be partitioned into I−, those
intervals in which R(x) is negative, and I+, where R(x) is positive.
Using the roots and these intervals, we have

f (x) = 0≡
n∨

i=1
x = xi

f (x)< 0≡
∨

i∈I−
x ∈ i

f (x)> 0≡
∨

i∈I+
x ∈ i

Proof. The rational function f (x) = P(x)
Q(x) , by definition. For≺ ∈ {<

,>,=}, P(x)
Q(x) ≺ 0≡ P(x)Q(x)≺ 0∧Q(x) 6= 0 (multiply by Q(x)2),

so our problem reduces to that of solving the predicate R(x) ≺ 0
which either has the form P(x)Q(x) or Q(x). We normalize R(x)
so that its leading coefficient is positive. From the Fundamental
Theorem of Algebra, we have R(x) = (x− x1)(x− x2) · · ·(x− xm),
where m is the degree of R(x). Complex roots with a non-zero
imaginary part cannot equal zero and when a + bi,b 6= 0 is a
root, its conjugate is also a root, so the product of the non-real
complex factors of R(x) is positive, and do not determine its sign,
R(x) = 0 holds whenever x equals any of the real roots of R(x), i.e.
(x = x1)∨ ·· · ∨ (x = xn). Otherwise, x falls into one of the n+ 1
intervals defined by the roots of R(x). Evaluating R(x) in each of
these intervals partitions them into I+, those intervals in which
R(x) is positive, and I−, those intervals in which R(x) is negative.
Thus, when R(x) 6= 0, it is negative whenever x falls into any of
the intervals in I− and positive whenever x is in some interval in
I+.

3.3.3 Finding a Floating-point Solution
Given a univariate, linear constraint φ , we need to find a solution
over F. Algorithm 5 loops over the intervals that φ defines. It tries to
solve φ at line 2, then substitutes the nearest float less than or equal

Algorithm 5 SOLVEOVERF: Φ→ An
F takes a path constraint and

returns a satisfying assignment over F if one exists.
input φ ∈Φ, a path constraint.

1: while true do
2: ~a := SMT.SOLVE(φ)
3: return ~a if not ISSAT(~a)
4: (x,v) =~a
5: ~a := SMT.SOLVE(φ [fp(v)/x])
6: return ~a if ISSAT(~a)
7: ~a := SMT.SOLVE(φ [next(fp(v),Ω)/x])
8: return ~a if ISSAT(~a)
9: φ := φ ∧ (x < fp(v)∨ x > next(fp(v),Ω))

10: end while

to the solution into φ and tries to solve the resulting formula at line
5. If that fails, it then substitutes the nearest float greater than or
equal to the solution into φ and tries to solve the resulting formula
at line 7. If this fails, it rules out the interval under consideration at
line 9 and considers the next interval. The complexity of this step is
linear in the number of intervals; we prove its correctness next.

Lemma 3.2. Algorithm 5 finds a floating-point solution to a uni-
variate linear constraint, if one exists.

Proof. The solution for a univariate system of linear inequalities
is a set of intervals. A linear inequality has the form ax+ b > 0.
Either a = 0 and b determines the truth value of the inequality, or
the solution of the clause falls into one of two intervals defined
by the root of the clause. Thus, the path constraint φ defines a
set of intervals

⋃
[ai,bi]

2. For x ∈ [ai,bi], let x f be the largest
floating-point number less than or equal to x. If either x f ∈ [ai,bi] or
next(x f ,Ω) ∈ [ai,bi] then a floating-point value exists that satisfies
the path constraints. Otherwise, we have x f /∈ [ai,bi]∧next(x f ,Ω) /∈
[ai,bi]∧ [ai,bi]∩ [x f ,next(x f ,Ω)] 6= /0 which implies x f < ai < bi <
next(x f ,Ω). In this case, there is no floating-point number in the
interval [ai,bi)]. So we add the constraint x < x f ∨ x > next(x f ,Ω)
to rule out [ai,bi] and consider a different interval. If the algorithm
exhausts all the intervals without finding a satisfying floating-point
value, no floating-point value for x satisfies the path constraint.

4. Implementation
In this section, we present the implementation of our floating-point
exception detection tool, Ariadne. Ariadne’s implementation mirrors
its operation: it consists of transformation or analysis components.
The transformation rests on LLVM 2.7 [29]. Its arbitrary precision
transformation uses GMP [14]. Its analysis phases extends version
2.7 of the KLEE symbolic execution engine [7] and uses the
polynomial solver from GSL 1.14 to rewrite constraints [15]. We
are indebted to the community for having made these tools available.
To give back, we will also publicly release our tool.

4.1 Transformations
Our transformations are implemented as an LLVM analysis and
transform pass and operate on LLVM IR. For this reason, our trans-
formations are language agnostic and, in particular, can handle C,
C++ and Fortran, the three languages in which most numerical soft-
ware is written. The principle transformations are reify exception,
loop bound, and arbitrary precision.
Reify Exception This transformation makes potential floating-
point exceptions explicit. Before each floating-point operation, it
injects operand guards to check for exceptions. The bodies of these

2 We consider the closed intervals; open intervals can be handled similarly.

checks signal the relevant exception and contain a program point
that can only be reached if the guarded operation can throw that
exception, as described in Section 3.2. It also handles elementary
functions and constructs the dependent symbolic variable table
(Section 3.2.2). Given an input module, it iterates over every
instruction, in every basic block, in every function. It rewrites
at the instruction-level, matching the Call instruction, arithmetic
(FAdd, FSub, FMul, FDiv) and conversion (FPToSI, FPToUI)
floating-point operations. When handling the Call instruction, the
transformation detects and handles elementary functions (Section 3).

Loop Bound Symbolic execution maintains state for each path;
path explosion can exhaust resources and prevent symbolic execu-
tion from reaching interesting program points. Loops exacerbate this
problem. The loop bound transformation takes a bound parameter
that it rewrites every loop in its input to obey. Our loop transforma-
tion operates on LLVM bytecode, after loop normalization. Here,
we show how it works conceptually:

whi le (exp r) {
body

}

⇒
i n t i = 0 ; / / a f r e s h v a r i a b l e
whi le (i ++ < BOUND && expr) {

body
}

Arbitrary Precision In Section 5.3, we propose a classifier
that separates likely to be avoidable over- and under-flows from
those that are likely to be unavoidable. The idea is to transform a
program that throws a floating-point exception into an equivalent
program that uses arbitrary precision rationals instead of floats, then
run the transformed program to check whether 1) it terminates and
2) the result can be converted into floating-point without over- or
under-flowing. The arbitrary precision transformation (AP), converts
each float type annotation into mpq_t, the GMP library’s arbitrary
precision rational type. AP converts each arithmetic operation to the
corresponding GMP function. AP recursively traverses structures.
AP rewrites internal function prototypes and definition and marshals
and unmarshals the parameters to external functions.

4.2 Analysis
Concurrently and separately from KLEE-FP [4], we added support
for floating point types and operations to KLEE. Our goal is not to
support symbolic reasoning on the equivalence between floating-
point values like KLEE-FP, but to replace KLEE’s underlying SMT
solver, STP, which does not support satisfiability reasoning over
the reals. We modified KLEE 1) to use version 3.1 of the Z3
SMT solver from Microsoft, which supports the theory of real
numbers, and 2) to support floating-point symbolic variables, update
its internal expressions when encountering floating-point operations,
and output those expressions, labeling the symbolic variables with
type real, as input to Z3. To implement linearization (Section 3.3.2)
and find the roots of polynomials, we extended KLEE to use the
GSL polynomial solver package and to internally represent every
expression as a rational function, i.e. a fraction of two polynomials.
Limitations KLEE requires heap-allocated memory to have
concrete size. Memory contents can be symbolic and KLEE handles
symbolic pointers by cloning. Ariadne inherits this memory handling
strategy from KLEE. We also restrict symbolic variables to floating-
point parameters and assign random values to integer parameters.
We do not handle parameters whose type is pointer or struct. We
intend to support these features in the future.

5. Evaluation
We first motivate our creation of a new multivariate, nonlinear solver,
then present exceptions it found and discuss its performance as an
automatic floating-point exception detector. Ariadne finds many
overflows and underflows (Xflows), many of which may be an
unavoidable consequence of finite precision. We close with the

presentation of an Xflow classifier that seeks to separate avoidable
from unavoidable Xflows and the F→ Q type transformation on
which it rests.

We ran our experiments on a machine running Ubuntu 10.04.2
LTS (kernel 2.6.32-30-server) with 128GB RAM and 3 Intel Xeon
X7542 6-Core 2.66GHz 18MB Cache, for a total of 18 cores. The
Ariadne engine is described in Section 4. We choose to analyze the
special functions of the GNU scientific library (GSL) version gsl-
1.14, because the first phase of Ariadne focuses on scalar functions
and most of GSL’s special functions take and return scalars. We
examined all the special functions in the GSL, even though some
are static and others share their core implementation. The GSL is
a mature, well-maintained, well-tested, widely deployed scientific
library [15]. It is for these reasons that we selected it for analysis:
finding nontrivial exceptions in it is both challenging and important.
In spite of these challenges, Ariadne found nontrivial exceptions.

Since Ariadne analyzes programs not functions, we applied a
transformation to each special function in the GSL library that
synthesizes a main that creates symbolic variables and calls the
analyzed function, in addition to applying the transformations
described in Section 3.2 and Section 4.1.

5.1 Experimental Setup
External functions and loops cause difficulties for static analyzes,
like the symbolic analysis underlying Z3-ARIADNE. We handle
a subset of external functions as described in Section 3.2.2. For
loops, a classic workaround tactic is to impose a timeout. Another
is to bound the loops. We did both. We imposed two timeouts
— per-query and per-run. To bound loops, we implemented a
transformation that injects a bound into each loop, as described
in Section 4.1. Although we could have restricted the use of this
loop bound transformation to functions whose analysis failed, we
re-ran the analysis on all functions at each loop bound, seeking the
Pareto optimal balance of loop bound and time-to-completion. The
infinity loop bound means that we did not apply our loop bound
transformation.
Concretization We performed the analysis described here with
maximum concretizations set to 1 (so we only tried a single con-
cretization per query), as we found that this setting effectively bal-
ances performance and precision: higher numbers of concretizations
had minimal impact on our results. When we uniformly sampled 1%
of queries for intensive concretization, our results were stable. At
1,000 concretizations, 6% of the UNSAT results at 1 concretization
became SAT; at 1,000,000, 8% of the UNSAT results became SAT.
These results validate our trade-off of performance against precision.
Z3-ARIADNE Our goal is to build a precise and practical tool
to detect floating-point exceptions. To this end, we hybridized the
Ariadne solver with Z3: we handed each query, even multivariate,
nonlinear ones, to Z3 first, and only queried the Ariadne solver on
those queries to which Z3 reported UNKNOWN. We name this
hybrid solver Z3-ARIADNE.
Result Reporting Multiple paths or multiple inputs along a
single path might reach an exception-triggering program point. If
that exception is a bug, its fix might require a single condition,
implying that all the bug-triggering inputs are in an equivalence
class, or logic bounded by the number of distinct inputs that trigger
it. Thus, we report exceptions as [X ,Y] where X counts unique
exception locations found and Y counts the unique input to location
pairs.
Preconditions The public API of the GSL documents some
preconditions, so do some of the comments internal to its source
code. To get a handle on Z3-ARIADNE’s false positive rate, we
selected, uniformly at random, 20 of the 315 functions in which
Z3-ARIADNE reported exceptions. We manually examined the

1

10

100

1000

10000

Invalid DivByZero Overflow Underflow

N
u

m
b

er
s

o
f

Ex
ce

p
ti

o
n

s
(l

o
g

sc
al

e)

Figure 7: Ariadne found 2091 input-to-location pairs that trigger
floating-point exceptions in the GNU Scientific library, distributed
as shown.

public API and the source of these 20 functions to 1) identify
their preconditions and 2) check whether the exception-triggering
inputs Z3-ARIADNE reported against these functions violated those
preconditions. Two of the 20 functions were static; against these two
functions, Z3-ARIADNE reports 7 input to exception pairs. Even
though they had no explicit preconditions in their comments, their
call sites may implicitly encode preconditions, so we conservatively
deemed these 7 pairs to be false positives. Six functions had publicly
documented preconditions. Against these 6 functions, Z3-ARIADNE
reported 16 exception pairs, 2 of which violated the function’s
precondition and are false positives. Against the remaining 12, Z3-
ARIADNE reported 64 input to exception pairs. In this experiment,
therefore, Z3-ARIADNE’s false positive rate was 9

77 or 12%.
Path Injection For each operation, the Ariadne transforma-
tion doubles (quadruples in the case of division) the paths to the
operation. The reason is that fabs uses a conditional to com-
pute the absolute value of its operand. Consider “double pre =
1.0/sqrt(2.0*M_PI*x);”. Here, the expression passed to sqrt
actually contains only one multiplication because the compiler re-
places the constant multiplication 2.0*M_PI with a single constant.
Considering only the multiplication in the operand of the sqrt,
Ariadne injects the following pseudocode:

1 if (x > 0) y = (2.0*M_PI*x)
2 else y = -(2.0*M_PI*x)
3 if (y > DBL_MAX) Overflow
4 if (y < DBL_MIN) Underflow
5 double pre = 1.0/sqrt(y);

In this example, Ariadne finds x = 2.861117e+307 that traverses
1, 3 and x = -2.861117e+307 that traverses 1, 2, 3; both inputs
satisfy the conditional and trigger Overflow.

5.2 Analysis Performance and Results
Z3-ARIADNE found a total of 2091 input-to-location pairs that trig-
gered exceptions, distributed as shown in Figure 7. Z3-ARIADNE
finds many more Xflows than Invalid or Divide-by-Zero exceptions
because programmers strive to avoid the latter and because Xflows
can mask these exceptions, as when an underflow occurs in the
evaluation of a denominator and terminates exploration of that path
before the division is evaluated. Figure 8 shows the distribution of
functions in terms of the potential exceptions they contain. As ex-
pected, this distribution is skewed: Given the maturity and popularity
of the GSL, it is not surprising that most of its functions contain
no latent floating-point exceptions. Ariadne reports the most excep-
tions, 152, in gsl_sf_bessel_Inu_scaled_asympx_e defined
in gsl/specfunc/bessel.c:

Perhaps the most serious exceptions are Divide-by-Zero and In-
valid exceptions. For a selection of these exceptions, Table 3 and Ta-

1

10

100

1000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

N
u

m
b

er
 o

f
Fu

n
ct

io
n

s

(l
o

g
sc

al
e)

Number of Exception-triggering Input-to-Location Pairs

Figure 8: Bar plot of the number of functions (y-axis) with the
specified number of input-to-location pairs that trigger floating-point
exceptions (x-axis).

Function (prefix gsl_sf_) Line Inputs

conicalP_1_e 989 2.0e+01, 1.0e+00
bessel_Jnu_asympx_e 234 0.0, 0.0
exprel_n_CF_e 89 -1.0e+00, 1.340781e+154
bessel_Knu_scaled_asympx_e 317 0.0, 0.0

Table 3: 4 of the 44 Divide-by-Zero exceptions Ariadne found.

Function (prefix gsl_sf_bessel_) Line Inputs

Inu_scaled_asymp_unif_e 361 -2.225074e-308, 0.0
Knu_scaled_asympx_e 317 -7.458341e-155, -8.654053e+01
Jnu_asympx_e 234 -5.0e-01, 0.0
Inu_scaled_asympx_e 302 -1.5e+00, -3.921032e+03

Table 4: 4 of the 125 Invalid exceptions Ariadne found.

ble 4 show the function in which we found this type of exception, the
line number, and exception triggering inputs. For example, Ariadne
found a Divide-by-Zero exception in gsl_sf_conicalP_1_e in
gsl/specfunc/legendre_con.c. Line 989 of this file is “const
int stat_V = conicalP_1_V(th, x/sh, lambda, 1.0, &V0,
&V1);”. When lambda = 20 and x = 1, sh = sqrt(x - 1.0)
* sqrt(x + 1.0) = 0, so x/sh throws Divide-by-Zero, 122 lines
and 8 control points from function entry.

Table 5 shows the results from our analysis of the scalar GSL spe-
cial functions. The data shows that, over the GSL special functions,
the loop bound (the first column) has little impact on the results. We
believe that the reason for this is that the analyzed functions do not
make heavy use of looping constructs.

Z3-ARIADNE attempts to explore all paths within the per-run
time bound it is given. When Z3-ARIADNE does not exhaust its
per-run timeout when analyzing a function, we increment the “No
Timeout” column. Z3-ARIADNE successfully explores a path when
it determines that the path is satisfiable; when it finds an exception,
that exception is real, i.e. it certainly occurs with the reported
inputs, even though Z3-ARIADNE does not model rounding, because
Z3-ARIADNE confirms candidate input-to-exception pairs via its
concrete execution check (Section 3.3).

Z3-ARIADNE’s abandonment of a path as unsatisfiable is provi-
sional for the three reasons discussed in Section 3.3: it approximates
floating-point semantics with reals, which notably ignores round-
ing; it concretizes multivariate into univariate constraints; and it
bounds loops. Of these three, we can have some confidence when
Z3-ARIADNE reports UNSAT due to concretization, because, as we
describe above, concretization is effective due to the fact that the
variables in our numerical constraints in practice either have few
or many solutions. The former case causes Z3-ARIADNE to report
unsatisfiable constraints. When reporting UNSAT, Z3-ARIADNE’s

precision is good, so the third column reports the count of functions
Z3-ARIADNE fully explored without encountering a per-query time-
out, i.e. U . In some of the functions it fully explored, Z3-ARIADNE
discovered no exceptions; the count of these functions is in column
four. The set of functions whose cardinality appears in the “No
Timeout” column contains the “All Paths Explored” functions which
contain the “No Exception Discovered” functions. We note that,
while most of the functions in which Z3-ARIADNE discovered no
exceptions at the infinity bound are loop-free, four are not.

During Z3-ARIADNE’s analysis of the GSL, Z3 handled 48% of
the total queries, while Ariadne handled the rest. Of the total queries
made, we can guarantee the results for 76% at the infinity bound.
The remaining 24% represent UNSAT results of which we cannot
be certain, since they involve concretization. That said, our intensive
concretization experiment shows that 92% of them are likely to be
UNSAT, with 1M concretizations, we found 8% additional SAT.
24% · 8% = 1.9%, so Z3-ARIADNE is likely to incorrectly resolve
around 2% of its constraints.

The loop bound transformation monotonically reduces the num-
ber of paths in a program, so each of the function columns should
be monotonically increasing. This pattern does not hold over “No
Timeout” column. There are two reasons for this variation. First, Z3
randomly hangs on some of the nonlinear, multivariate constraints
Z3-ARIADNE feeds it, in spite of its per-query timeout. Second,
KLEE flips coins during path scheduling to ensure better coverage.
In short, some of the analysis runs at certain loop bounds were
simply unlucky.

The three columns that contain the ratios of SAT |S|
|Q| , UNSAT

|S̄|
|Q| , and UNKNOWN |U |

|Q| queries report on Z3-ARIADNE’s overall
effectiveness. Recall that in Z3-ARIADNE, Ariadne only handles
Z3’s unknown queries. The Ariadne ratio column reports Ariadne
effectiveness at solving Z3’s unknowns in our context. Let SA, S̄A
and UA be the SAT, UNSAT and UNKNOWN queries that Ariadne
handles. The Ariadne ratio then is |SA∪S̄A|

|SA∪S̄A∪UA|
. In short, Ariadne

found a substantial fraction of the exceptions and resolved 76–82%
of the queries that Z3 was unable to handle.

The “Unique” exception field shows [X ,Y], where X is the
number of exception locations and Y is the number of unique input to
exception location pairs found by Z3-ARIADNE only at the specified
loop bound. In the case of the number of input to location pairs, only
the pair is unique, not the path it take nor the exception it reaches.
At loop bound 64, the unique exception field in Table 5 contains
[3,145]. This means that the analysis discovered 3 exceptions that it
did not also find at another bound and 145 input to exception pairs,
found only at this bound. The “Shared” also reports exceptions and
paths to exceptions, but without the constraint that those exceptions
and input to exception pairs were only discovered at the specified
loop bound.

Our analysis is embarrassingly parallelizable, so the test harness
partitions the functions onto available cores (in our case 18), then
analyzes each function, one by one, against each loop bound. It
records the analysis time per function per loop bound. The sum
of all the analysis times for all the functions at each loop bound
is reported in the total time column. Again, we see that, with our
corpus, the loop bound does not have much impact on analysis time.

5.3 Classifying Overflows and Underflows
Some overflows and underflows (Xflows) are an unavoidable con-
sequence of finite precision. The addition Ω+Ω is a case in point.
Some Xflows, however, may be avoided by changing the order of
evaluation in or outright replacing the algorithm used to compute
a solution. Because a developer’s time is precious, we introduce
the avoidable Xflow classifier to distinguish potentially avoidable
Xflows from those that are not.

Loop No All Paths No Exception |S|
|Q|

|S̄|
|Q|

|U |
|Q|

Ariadne Exceptions Total Time
Bound Timeout Explored Discovered Ratio Unique Shared (hours)

infinity 363 136 45 0.57 0.30 0.13 0.76 [20,174] [636,847] 89
64 370 149 54 0.57 0.32 0.11 0.80 [3,145] [658,874] 85
32 368 149 54 0.57 0.32 0.11 0.81 [1,162] [651,859] 87
16 367 149 54 0.57 0.32 0.11 0.81 [0,142] [652,858] 87

8 368 149 54 0.57 0.32 0.11 0.81 [3,144] [652,862] 86
4 366 149 54 0.58 0.32 0.10 0.82 [0,138] [644,853] 89
2 367 149 54 0.56 0.33 0.11 0.81 [4,134] [644,863] 86
1 372 149 54 0.56 0.33 0.11 0.81 [4,144] [655,872] 84

Table 5: The results of Z3-ARIADNE’s analysis of the 467 GSL special functions at the specified loop bounds. Here, Q is the set of all queries
issued during analysis and S, S̄ and U partition Q into its SAT, UNSAT and UNKNOWN queries.

Overflows Underflows

Avoidable? 98 180
Total 155 217
Ratio 0.63 0.83

Table 6: Potentially avoidable overflows and underflows.

Let A : Fn → F be an algorithm implemented using floating-
point and A be that same algorithm implemented using arbitrary
precision arithmetic over Q. When A(~i) overflows or underflows,
we deem that exception potentially avoidable if A (~i) falls within
the range of normal floating-point numbers, i.e. |A (~i)| ∈ [λ ,Ω].

This classifier rests on the intuition that, if the evaluation of a
floating-point expression over arbitrary precision arithmetic falls
within the range of normal floating-point numbers, then it may be
possible to find an alternate expression that evaluates to that same
result over floating-point without generating intermediate values that
trigger floating-point exceptions. For example, consider Sterbenz’
av3, where x+ y−x

2 . When x=−Ω,y=Ω, the subtraction overflows
under floating-point, but the final result is 0, a normal floating-point
number. Further, we know that av1 is the algebraically equivalent
(over the reals) expression x+y

2 that, in this case, generates the correct
answer without intermediate overflow.

To realize our Xflow classifier, we wrote a transformer that
takes a numeric program and replaces its float and double types
with an arbitrary precision rational type, for whose implementation
we use mpq_t from GMP [14]. In addition to rewriting types, our
arbitrary precision transformer also rewrites floating-point opera-
tions into rational operations. For instance, z = x + y becomes
mpq_add(z,x,y).

Xflows dominated the exceptions we found, comprising 91.9%
of all exceptions. We defined and realized our classifier with the aim
of filtering these Xflows. Nonetheless, the number of potentially
avoidable Xflows remains high in Table 6. Note that GSL is a worst
case for us. In a numerical library such as the GSL, these ratios are
high because the range of many mathematical functions is small
but their implementation relies on floating-point operations whose
operands have extremal magnitude.

6. Related Work
Ariadne is related to the large body of work on symbolic execu-
tion [27], such as recent representative work on KLEE [7] and
DART [18]. Our work directly builds on KLEE and uses its standard
symbolic exploration strategy. To the best of our knowledge, it is
the first symbolic execution technique applied to the detection of
floating-point runtime exceptions. We have proposed a novel pro-
gramming transformation concept to reduce floating-point analysis

to reasoning on real arithmetic and developed practical techniques
to solve nonlinear constraints.

Our work is also closely related to the static analysis of numerical
programs. The main difference of our work from these is our focus
on bug detection rather than proving the absence of error — every
exception we detect is a real exception, but we may miss some. We
next briefly discuss representative efforts in this area.

Majumdar et al. extended the Splat concolic testing engine to
support floating-point and nonlinear constraints, then tackled the
problems of path coverage, range and robustness analysis [30].
Lakhotia et al. empirically evaluated two search-based techniques
for solving numerical constraints — alternating variable method and
evolution strategies [28]. Their goal was to improve the solution of
numerical constraints in general, not in our specific context of de-
tecting floating-point exceptions. They found that these techniques
do not decisively outperform Pex’ custom solvers. Godefroid and
Kinder observed that numerical operations rarely appear in condi-
tionals and therefore not in the path constraint [17]. They leverage
this observation to build an analysis that aims to prove the memory
safety of floating-point operations and the non-interference of the
numeric and non-numeric parts of the subject program. This is in
marked contrast with our work, where our transformation explicitly
adds numeric conditions and solves the resulting constraints in order
to detect floating-point exceptions.

Goubault [20] developed an abstract interpretation-based static
analysis [5] to analyze errors introduced by the approximation of
floating-point arithmetic. Goubault and Putot later refined this work
with a more precise abstract domain [21]. Brillout et al. encode
floating-point operations as functions on bit vectors, then succes-
sively both over- and under-approximate the resulting formulae [2].
Martel [31] presents a general concrete semantics for floating-point
operations to explain the propagation of roundoff errors in a compu-
tation. In later work [32], Martel applies this concrete semantics and
designed a static analysis for checking the stability of loops [23].
Miné [34] proposes an abstract interpretation-based approach to
detect floating point errors. Underflows and round-off errors are
considered tolerable and thus not considered real run-time errors.
Monniaux [35] summarizes the typical errors when using program
analysis techniques to detect bugs in or verify correctness of nu-
merical programs. Astree [6] statically analyzes C programs and
attempts to prove the absence of overflows and other runtime errors,
both over integers and floating-point numbers.

Also related are different approaches to model the floating
point computation for numerical programs. Fang et al. [11, 12]
propose the use of affine arithmetic to model floating-point errors.
Darulova et al. augment Scala with two new data types: AffineFloat,
which computes error bounds while remaining compatible with
the Double type and SmartFloat, which generalizes AffineFloat to
sets of inputs [8]. Two projects that address floating-point accuracy

problems are Fluctuat [10] and a recent paper that dynamically
shadows floating-point values and operations with higher precision
operands and operators in order to detect accuracy loss, catastrophic
cancellation in particular [1]. Ariadne complements these papers,
since its focus is the detection of floating-point exceptions, not
floating-point accuracy.

7. Conclusion and Future Work
We have presented our design and implementation of Ariadne, a
symbolic execution engine for detecting floating-point runtime
exceptions. We have also reported our extensive evaluation of
Ariadne over a few hundred GSL scalar functions. Our results show
that Ariadne is practical, primarily enabled by our novel combination
of program rewriting to expose floating-point exceptional conditions
and techniques for nonlinear constraint solving. Our immediate
future work is to publicly release the tool to benefit numerical
software developers. We would also like to investigate approaches
to support non-scalar functions, such as those functions that accept
or return vectors or matrices.

8. Acknowledgments
We thank Jian Zhang, Mark Gabel, David Hamilton, and the anony-
mous reviewers for constructive feedback on earlier drafts of this
paper. We also thank Zhaojun Bai, William M. Kahan, and Ren-
Cang Li for helpful discussions on this work. This research was
supported in part by NSF (grants 0702622, 0917392, and 1117603)
and the US Air Force (grant FA9550-07-1-0532). The information
presented here does not necessarily reflect the position or the policy
of the government and no official endorsement should be inferred.

References
[1] F. Benz, A. Hildebrandt, and S. Hack. A dynamic program analysis to

find floating-point accuracy problems. In PLDI, 2012.
[2] A. Brillout, D. Kroening, and T. Wahl. Mixed abstractions for floating-

point arithmetic. In FMCAD, 2009.
[3] CNN. Toyota: Software to blame for Prius brake prob-

lems. http://www.cnn.com/2010/WORLD/asiapcf/02/
04/japan.prius.complaints/index.html.

[4] P. Collingbourne, C. Cadar, and P. H. Kelly. Symbolic crosschecking
of floating-point and SIMD code. In EuroSys, 2011.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In POPL, 1977.

[6] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTRÉE analyzer. In ESOP, 2005.

[7] D. E. Daniel Dunbar, Cristian Cadar. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI, 2008.

[8] E. Darulova and V. Kuncak. Trustworthy numerical computation in
Scala. In OOPSLA, 2011.

[9] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
2008.

[10] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine.
Towards an industrial use of FLUCTUAT on safety-critical avionics
software. In FMICS, 2009.

[11] C. F. Fang, T. Chen, and R. A. Rutenbar. Floating-point error analysis
based on affine arithmetic. In ICASSP, 2003.

[12] C. F. Fang, R. A. Rutenbar, M. Püschel, and T. Chen. Toward efficient
static analysis of finite-precision effects in DSP applications via affine
arithmetic modeling. In DAC, 2003.

[13] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient
solving of large non-linear arithmetic constraint systems with complex
Boolean structure. JSAT, 1(3-4):209–236, 2007.

[14] FSF. GMP: The GNU multiple precision arithmetic library. /http:
//gmplib.org/.

[15] FSF. GSL: GNU scientific library. http://www.gnu.org/s/
gsl/.

[16] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and
arrays. In CAV, 2007.

[17] P. Godefroid and J. Kinder. Proving memory safety of floating-point
computations by combining static and dynamic program analysis. In
ISSTA, 2010.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI, 2005.

[19] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1), 1991.

[20] E. Goubault. Static analyses of the precision of floating-point opera-
tions. In SAS, 2001.

[21] E. Goubault and S. Putot. Static analysis of numerical algorithms. In
SAS, 2006.

[22] J. Hauser. Handling floating-point exceptions in numeric programs.
TOPLAS, 18(2), 1996.

[23] N. J. Higham. Accuracy and stability of numerical algorithms. Society
for Industrial and Applied Mathematics, 2nd edition, 2002.

[24] IEEE Computer Society. IEEE standard for floating-point arithmetic,
2008.

[25] D. Jovanović and L. de Moura. Solving non-linear arithmetic. In
IJCAR, 2012.

[26] W. Kahan. A demonstration of presubstitution for ∞/∞ (Grail), 2005.
[27] J. C. King. Symbolic execution and program testing. Communications

of the ACM, 19, 1976.
[28] K. Lakhotia, N. Tillmann, M. Harman, and J. De Halleux. FloPSy:

search-based floating point constraint solving for symbolic execution.
In ICTSS, 2010.

[29] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, 2004.

[30] R. Majumdar, I. Saha, and Z. Wang. Systematic testing for control
applications. In MEMOCODE, 2010.

[31] M. Martel. Propagation of roundoff errors in finite precision computa-
tions: a semantics approach. In ESOP, 2002.

[32] M. Martel. Static analysis of the numerical stability of loops. In SAS,
2002.

[33] Z. Merali. Computational science: ...error ...why scientific program-
ming does not compute. Nature, 467:775–777, 2010.

[34] A. Miné. Relational abstract domains for the detection of floating-point
run-time errors. In ESOP, 2004.

[35] D. Monniaux. The pitfalls of verifying floating-point computations.
TOPLAS, 30(3):12:1–12:41, 2008.

[36] K. L. Palmerius. Fast and high precision volume haptics. In Proceed-
ings of the IEEE World Haptics Conference. IEEE, 2007.

[37] P. Rümmer and T. Wahl. An SMT-LIB theory of binary floating-point
arithmetic. In SMT at FLoC, 2010.

[38] K. Sen. CUTE: a concolic unit testing engine for C. In FSE, 2005.
[39] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, 1974.
[40] Wikipedia. Ariane 5 flight 501. http://en.wikipedia.org/

wiki/Ariane_5_Flight_501.

http://www.cnn.com/2010/WORLD/asiapcf/02/04/japan.prius.complaints/index.html
http://www.cnn.com/2010/WORLD/asiapcf/02/04/japan.prius.complaints/index.html
/http://gmplib.org/
/http://gmplib.org/
http://www.gnu.org/s/gsl/
http://www.gnu.org/s/gsl/
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

	Introduction
	Illustrative Example
	Approach
	Background and Notation
	Program Transformation
	Basic Arithmetic Operations
	Elementary Mathematical Functions

	Solving Numeric Constraints
	Concretization
	Linearizing Univariate Nonlinear Constraints
	Finding a Floating-point Solution

	Implementation
	Transformations
	Analysis

	Evaluation
	Experimental Setup
	Analysis Performance and Results
	Classifying Overflows and Underflows

	Related Work
	Conclusion and Future Work
	Acknowledgments

