
Trust Is in the Eye of the Beholder

Dimitri DeFigueiredo? Earl Barr† S. Felix Wu†

?Adobe Systems Inc. †University of California, Davis
defigueiredo@ucdavis.edu {etbarr,sfwu}@ucdavis.edu

Abstract

We carefully investigate humanity’s intuitive under-
standing of trust and extract from it fundamental
properties that succinctly synthesize how trust works.
From this detailed characterization we propose a for-
mal, complete and intuitive definition of trust.

Using our new definition, we prove simple possibil-
ity and impossibility theorems that dispel common
misconceptions, expose unexplored areas in the de-
sign of reputation systems and shed new light on the
shortcomings of previous impossibility results.

Keywords: trust, trust transitivity, reputation
systems, non-exploitability, personalized reputation
function.

1 Introduction

Many internet applications use trust to help users
in their online interactions with others. The Feed-
back Forum, eBay’s rating system, is perhaps the best
known example. Trust, in different flavors, is particu-
larly useful to distributed online applications such as
peer-to-peer or social networks [10]. Both online and
off-line, knowing how much to trust someone helps
us know what to do in our interactions with them.
To better understand the concept of trust online, we
begin exploring mundane off-line real-world trust, the
concept we seek to mimic.

Trust systems use reputation functions to quantify
trust. Consensus-based reputation functions have in-
trinsic limitations, as we show in Theorem 3.1. In

particular, they are exploitable — they can be manip-
ulated by untrusted parties. We introduce a new class
of reputation functions, personalized reputations func-
tions that overcome these limitations. Personalized
reputation functions allow a person to control how
much she trusts another party, independent of the
opinion of others, thus allowing her to make her own,
individual, assessment of each party’s trustworthiness.
Consensus-based reputation functions require both
Alice and Bob to agree on how trustworthy Charlie is.
Personalized reputation functions do not.

To date, most trust systems use reputation func-
tions that arbitrarily map trust to numbers. We
quantify trust in terms of utility. This insight links
the trust transitivity problem, i.e. how much should
you trust the friend of a friend, to the problem of
making interpersonal comparisons of utility.

People confuse trust and trustworthiness: they tend
to think how much they trust a person is an objec-
tive measure of that person’s trustworthiness, that
everyone would agree with their trust assessment if
only they “knew what I know.” Trust is, in fact, in-
dependent of trustworthiness. Alice may trust Bob
even though he is not trustworthy; Alice may distrust
Charlie even though he is trustworthy. This confu-
sion underlies the prevalence of trust systems built on
consensus-based reputation functions. Below, we draw
a bright line between trust and trustworthiness, set-
ting the stage for trust systems built on personalized
reputation functions.

We make the following contributions:

1. We introduce and formalize personalized reputa-
tion functions;
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2. We provide a definition of Trust that exposes the
link between trust transitivity and interpersonal
comparisons of utility; and

3. We elucidate the difference between trust and
trustworthiness.

This paper is structured as follows: In Section 2, we
formalize a notion of trust that is domain-specific and
captures the difference between trust and trustworthi-
ness. Our formalism also shows the link between the
transitivity of trust and interpersonal comparisons of
utility. In Section 3, we provide possibility and im-
possibility results. We show that all consensus-based
reputation systems are exploitable by untrustworthy
parties, but also that there are non-exploitable person-
alized reputation systems, such as TrustDavis which
we have previously proposed [4]. The latter result dis-
pels fallacies from previous impossibility theorems [3].
Section 4 discusses the implications of these results
in relation to previous work. Section 5 concludes.

2 Formalizing Trust

Trust involves two roles — a trusting and a trusted
role. Distinct parties usually perform these roles.

Generally, trust is domain-specific: we may trust
a person in one domain, but not in another. For
example, I trust my father to take care of my finances,
but I do not trust him to be on time for dinner. We
tend to aggregate disparate domains such as “being on
time” or “handling money” into more general ones. In
fact, I could say: “I trust my father,” independent of
domain. In these aggregate domains, we may not be
able to decide whether we trust our friend more than
our sister! These abstract domains may be partially
ordered. However, if given a specific domain, we
can usually provide a more specific assessment of
trustworthiness. In what follows, we assume specific
domains that are totally ordered.

Definition 2.1 (trust values). Trust values are real
numbers.

This definition implies that trust is quantifiable on
a single scale and that, from a single agent’s point of
view, there is a total ordering when comparing how

trustworthy different agents are. If Alice tells us that
(for the same domain):

• Alice trusts Bob more than Charlie;

• Alice trusts Charlie more than Derek; and,

• Alice trusts Derek more than Bob.

We believe she would be willing to change her mind
once we point out the inconsistency.

We do not make further restrictions such as assum-
ing that trust is a binary variable with two possible
values (−1, 1) or that it is in the interval [0, 1], except
that we do require that all agents agree that higher
values are better (see the definition of trust threshold
below).

We would like to point out a useful interpretation
for trust values. One can think of trust values as
being specified in dollars. Positive values answer the
question: How much money are you willing to risk on
this person? The higher the value, the more trusted
the person is. This leads to a similar interpretation
for negative trusts values. If v1 trusts v2 a negative
amount −x, then x specifies how much money v1
would have to risk gaining (not losing) to be worth
the risk of depending on the behavior of v2. This
interpretation motivates the definition of trust we
provide later in this section.

Definition 2.2 (reputation graph). A reputation
graph is an annotated directed Graph G = (V,E),
where each vertex is an agent and each directed edge
in E has an associated trust value. The reputation
graph does not need to be complete.

We interpret this reputation graph G as follows.
There is a directed edge labeled x from vertex v1 to
vertex v2, if v1 trusts v2 the specified amount x. If
there is no edge between two vertices, then the amount
of trust between them is unspecified.

We could build such a graph by asking each agent
about all others. For example, we could ask v1: How
much are you willing to bet that v2 is a good cook?
And then add an edge to the graph, starting at v1
and ending at v2, labeled by the corresponding dollar
amount. If v1 does not know how much he trusts v2,
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we would not add an edge. In light of this interpreta-
tion, we consider all of a vertex’ outgoing edges to be
data local to and under the control of that vertex.

The next definition accomodates the transitivity
of trust. Specifically, the degree to which people use
second-hand opinions when considering a domain. For
example, although I trust Bob to be honest, he is naive
and therefore I do not trust his judgement about the
honesty of others.

Definition 2.3 (world). A World is a sequence of
reputation graphs
W = {Gk = (V,Ek), k ≥ 0}, where all reputation
graphs use the same set of vertices. We call the first
reputation graph G0 the direct experience graph. The
following graphs are called the 1-indirect graph, the
2-indirect graph, and so on.

Let us use the domain of “being a good cook” as
an example. When building the direct experience
graph one should only use information obtained from
actually eating the food cooked by another agent.
No information received indirectly from other parties
should be used. There should only be an edge going
from v1 to v2 if v1 actually tasted food prepared
by v2 and has an opinion on it. Similarly, the 1-
indirect graph should answer the question: Is this
person a good food critic? In other words, Does v1
trust v2’s palate to evaluate someone else’s cooking?
The sequence of graphs represents increasing levels of
indirection for the same initial domain.

A world has a single set of vertices, but otherwise
the graphs Gk can change arbitrarily for different
k. Each graph has a different set of edges Ek, each
labeled with different trust values. The definition of a
world mirrors the multiple domains of trust and that
there may not be correlations between these domains.
Our results hold regardless of whether or not there
exist correlations between edges in different graphs:
the definition takes into account settings where some
agents trust their cooks as good food critics and other
agents do not.

Definition 2.4 (reputation function). Given a world,
a reputation function f assigns a trust value to each
ordered pair of vertices.

Definition 2.5 (trust graph). A reputation function
outputs a complete, directed trust graph.

The reputation function tells us how trustworthy v1
thinks v2 is, for every pair (v1, v2) in the world. Be-
cause two parties may not have interacted in the past,
we let a reputation graph be incomplete. However,
because an agent does not know whom it will meet
next and may need to suddenly form an opinion, we
require the trust graph to be complete. Trust graphs
and reputation graphs represent different concepts.
The reputation graphs represent the reputation infor-
mation available. Given that information, the trust
graph expresses how trustworthy each party is, from
different points-of-view. We will consider the trust
graph in detail later. Given the world W , we use
f [W ](vi, vj) to denote the trust value f assigns to the
edge (vi, vj) in the trust graph. When W is clear from
context, we simply use f(vi, vj).

We require that all the reputation information avail-
able to a reputation function be expressed in the edges
and edge labels of the different graphs that constitute
a world. No other information should be used. This
can be made precise by the following isomorphism
requirement:

Definition 2.6 (normalization). Let us denote by
πW the world obtained by permuting the vertices
of W with permutation π : V → V . A normalized
reputation function f is one where f [W ](vi, vj) =
f [πW ](π(vi), π(vj)) for any permutation of the ver-
tices π and for any world W .

The above definition simply states that if we per-
mute the input to the reputation function we should
obtain the same permutation of the output. This
requirement forces reputation functions not to obtain
extra information from their input in the form of ver-
tex labels. For example, assume that v2 trusts v1
because v1 represents the New York Times. In other
words, v1 has the vertex label “New York Times”.
Why does v2 trust the New York Times? Is it not
because of the New York Time’s reputation? If so,
this reputation information should be added to the
world as edges (v2, v1) with the corresponding edge
labels. Note that it is easy to transform vertex labels
into edges that convey the same information.
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Normalization forces any knowledge about the
world to be made explicit in the edges and edge la-
bels of the world given as input to the reputation
function. This requirement also prevents reputation
functions that perform better only when there are
distinguished nodes from being mistaken for functions
that work well in more general settings. It does not
prevent such functions from obtaining information, it
just makes the information used explicit. The nor-
malization helps prevent the designer from comparing
apples to oranges when comparing two reputation
functions. For the remainder of this paper, we put all
reputation information on edge labels and will restrict
our attention to normalized reputation functions.

Definition 2.7 (consensus-based vs. personalized).
A consensus-based reputation function is one where,
for all vertices vj in the world graph, the trust values
xij assigned to ordered pairs of vertices (vi, vj) are
the same for all pairs ending in the same vertex vj .
Therefore, the trust value x1j = x2j = ... = xnj =
yj assigned by the reputation function is completely
determined by vj and denotes vj ’s trustworthiness to
all other agents. A reputation function that is not
consensus-based is personalized.

In effect, a consensus-based reputation function
assigns a trust value to each vertex in the trust graph
it outputs, instead of assigning a trust value to each
edge in that same graph.

Definition 2.8 (trust threshold). The trust threshold
for agent vi is a trust value hi established by that
agent. All agents vj whose trust values for (vi, vj)
assigned by the reputation function are above the
threshold hi are trusted by vi; otherwise they are
untrusted. In other words, if f(vi,vj) ≥ hi then vi
trusts vj ; otherwise vi does not trust vj .

Note that this classification of agents as trusted
and untrusted is very flexible. It allows agents with
negative trust values to be trusted or agents with
positive trust values to be untrusted depending on
the trust threshold each trusting party chooses.

We can now also define what we mean by distrust.
In everyday life, we can usually classify others as
trusted, neutral or distrusted. This leads to a simple

definition of distrust: all agents strictly below the
trust threshold are distrusted; i.e. , if f(vi, vj) < hi
then vi distrusts vj . This is a very simple notion, but
we have already captured it with our definition of an
untrusted agent above.

We believe there are two alternative, equally intu-
itive, possible definitions of this concept. One is that
an agent vj is distrusted by the trusting party vi if
f(vi, vj) < 0. According to our previously suggested
interpretation of trust values, the trusting party needs
to be tempted by the possibility of gain in order for
him to interact with a distrusted party. Another defi-
nition is that a node is distrusted whenever it is trusted
less than a complete stranger1. This definition implic-
itly assumes that all complete strangers are trusted
to the same extent by the trusting party vi. We call
this the stranger threshold si.

Most of time the stranger threshold is zero and the
definitions are equivalent and equally appealing. How-
ever, it is possible for one to be trusting of strangers
and thus willing to take risks that depend on their
behavior. This would be analogous to setting a high
stranger threshold, i.e. si > 0. This does not necessar-
ily mean that strangers are trusted (as that requires
that si ≥ hi and it may be that 0 < si < hi), but
only that the trusting party is willing to take some
risks based on their behavior.

We adopt the latter definition for distrust. We do
so because it brings out the observation that distrust
is useful, mostly when parties cannot easily get new
identities. Otherwise, it is easy for malicious players
to issue themselves a new identity everytime they want
to fool somebody. The “cheap pseudonym problem”
[5] rears its head again.

We are now ready to provide a definition of trust.

Definition 2.9 (Trust). Trust is the personal thresh-
old determined by the trusting party that describes
the maximum utility the trusting party is willing to
risk when dealing with the trusted party.

The definition quantifies trust in terms of utility
and is a significant contribution of this paper. Express-
ing trust in terms of utility makes the link between

1For brevity we omit the formal definition of complete
strangers.
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the trust transitivity problem and interpersonal com-
parisons of utility very clear. The trust transitivity
problem is a consequence of and reduces to the prob-
lem of making interpersonal comparisons of utility.
The last two definitions also make precise colloquial
questions like: “How much do you trust him?” and
“Is he trustworthy?”

Definition 2.10 (collusion). A collusion is a subset
of the vertices of a World.

Definition 2.11 (untrusted collusion). An untrusted
collusion, from agent v’s perspective, is a collusion
whose members are all untrusted agents.

Definition 2.12 (manipulated world). Given a world
W = {(V,Ek)} and a collusion C ⊆ V , a world manip-
ulated by that collusion W ′

C = {(V ′, E′
k)} is a modified

world in which the collusion can change the reputation
graphs in two ways:

• The collusion can arbitrarily add or remove edges
starting from any member of the collusion; i.e.,
for any vi ∈ C and vj ∈ V , we can add or remove
any edge of the form (vi, vj) in any reputation
graph.

• The collusion can arbitrarily change the trust
values on any edge starting from any member
of the collusion (including any edges they have
added).

In all other respects W ′
C is identical to W . In partic-

ular, V ′ = V .

A non-exploitable reputation function is one
for which each trusting party can determine au-
tonomously and arbitrarily how much she trusts oth-
ers. This implies that no untrusted collusion can
increase the trust value of any agent. This enables the
trusting party to control how much trust she places
on others and to set an absolute bound on how much
damage any collusion of malicious agents can do. The
trusting party can still take risks if she so desires.

Definition 2.13 (non-exploitability). A non-
exploitable reputation function is a reputation function
where: For any given world W , for any vertex vi and

any trust threshold h chosen by that vertex, no un-
trusted collusion in W can change the trust value of
any agent vj , i.e. f(vi, vj). This is done by compar-
ing trust values in two worlds: the standard honest
world W and any world manipulated by an untrusted
collusion.

Notice that this definition has six quantifications.
We quantify over all worlds, for each world over all
agents (trusting party role) and any trust threshold
that agent may choose. Then, for each agent, for all
possible collusions. For each such collusion, we con-
sider all possible manipulations due to that collusion.
Finally, for each possible manipulation we look at
all agents (trusted party role) and ask whether that
manipulation was able to change that agent’s trust
value. The quantifications are:

• over all worlds

• over all trusting parties and their thresholds

• over all collusions

• over all manipulations that collusion can perform

• over all agents whose values may be affected by
these manipulations.

This definition encompasses whitewashing attacks [6],
where an agent sheds a bad reputation and reappears
as a newcomer, by its first quantification over all
worlds. This quantification includes a world where
both the new and old identities exist and collude with
each other. Similarly, sybil attacks [3], where a mali-
cious agent obtains multiple identities, are modelled
as collusions.

A trivial reputation function is one that completely
ignores the transitivity in trust and only takes into
account local data.

Definition 2.14 (triviality). A trivial reputation
function f is a reputation function such that for any
given world and for any pair (vi, vj) the value of
f(vi, vj) depends only on edges starting at vi and is
independent of all other edges.

This definition is actually slightly more general than
required by our proofs. We are only concerned about
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ruling out a reputation function that is fixed. We
could have opted for a more restrictive definition as
in [3] or [2]. However, we believe that triviality also
applies to reputation functions that use only local,
but not necessarily fixed, information. That being so,
triviality is better defined as above.

3 The Limitations of Trust

Our impossibility result follows clearly from the defi-
nitions above.

Theorem 3.1. All non-exploitable consensus-based
reputation functions are trivial.

Proof. We assume that a consensus-based reputa-
tion function f is non-trivial and show that it is
exploitable.

If there is only one node, all information is local
and all reputation functions satisfy the condition for
triviality, therefore we will assume that there exist
at least two nodes. Assuming we have a reputation
function that is consensus-based, any trusted party
has a single universal trust value. Consider any two
distinct nodes v1 and v2. We define two untrusted
collusions — U1 (untrusted by v1), and U2 (untrusted
by v2). The set of all nodes is V and U1 = V − U1

is the set of all nodes not in U1. In the trust graph
output by the consensus-based reputation function
f using the honest world W as input, v1 has a trust
value of t1 and v2 has a trust value of t2.

Assume that U1 now wants to trick the trusting
party v1 and change t2. There are only two possi-
bilities: either U1 is able to change t2 or not. If U1

can change t2, then f is exploitable, by definition.
We therefore continue with the assumption that U1

cannot change t2, and consider the situation from v2’s
perspective and ask “Can U1 change t2?”

As with U1, U1 can either change t2 or not. If U1

cannot, f is trivial, since, if neither U1 nor U1 can
change t2, t2 is fixed (whomever v2 might be) and we
have contradicted our assumption that f is nontrivial.
We therefore continue with the assumption that U1

can change t2, and show that there exists a world in
which U1 ⊆ U2.

If v2 ∈ U1, it cannot change t2, since we have
assumed U1 cannot change t2. If v2 /∈ U1 and it
can change t2, this fact does not make v1 exploitable
since v1 trusts v2: the question is whether v2 can be
exploited. Regardless of whether v2 ∈ U1 or not, v2
can change h2, its trust threshold. In particular, v2
can set h2 to be greater than the greatest trust value
of any node in V . In so doing, v2 sets U2 = V and no
node is trusted. Thus, U1 is an untrusted collusion
in v2’s eyes and f is exploitable against v2.

So we have shown f is exploitable against v1, or,
if it is not, f either is trivial, in contradiction of our
assumption that f is nontrivial, or f is exploitable
against v2. Therefore, f is exploitable.

This theorem does not limit all reputation func-
tions, only consensus-based ones. However, it does
show that all non-trivial consensus-based reputation
functions are exploitable. In other words, consensus-
based reputation systems are intrinsically insecure.
There is always a way to manipulate such systems.

Theorem 3.2. There are non-trivial non-exploitable
personalized reputation functions.

The proof that follows is constructive. We build a
binary (trusted/untrusted) reputation function that
expresses a simple transitivity notion: “I trust you, if
I trust somebody who trusts you”. Without loss of
generality, we set a global “reputation threshold” λ,
but this is distinct from and does not preclude agents
from picking their own trust thresholds. However,
the binary nature of this toy function fλ means that
trust thresholds outside the interval (0, 1) lead to ei-
ther everyone being trusted or untrusted, whereas all
threshold settings within the interval are mutually
indistinguishable. The function fλ also assumes that
all reputation graphs are identical and disregards all
but the direct experience graph. This is not as unre-
alistic an assumption as it may seem at first: if you
are a good cook you can probably identify other good
cooks. We proposed a reputation system based on
a non-trivial, non-exploitable reputation function in
previous work [4].

Proof. From lemmas 1 and 2 below we obtain that
the function fλ is non-trivial and non-exploitable.
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Figure 1: An example direct experience graph.

Definition 3.1 (trusted path). Given a world W , a
trusted path from vertex vi to vertex vj exists if there
is a directed path in the direct experience graph from
vi to vj along which all edges are labeled by at least
λ.

Define fλ as follows:

fλ(vi, vj)=
{

1, if a trusted path from vi to vj exists
0, otherwise

Lemma 3.3. The function fλ is non-trivial.

Proof. Let us set w.l.o.g. the reputation threshold
λ = 0.5. Consider the direct experience graph with
four nodes v1,v2, v3 and v4 depicted in Figure 1. The
node v4 has no incoming or outgoing edges; whereas
v3 can be reached from v1 through the trusted path
(v1, v2), (v2, v3). The only asymmetry between v3 and
v4 in the graph is that there is no edge (v2, v4) above
the threshold λ while the edge (v2, v3) exists and is
above the threshold. This data is not local to v1 (it is
local to v2), but, because of the data at v2, fλ outputs
different trust values making f(v1, v3) = 1 whereas
f(v1, v4) = 0. Therefore fλ depends on non-local data
and is non-trivial.

Lemma 3.4. The function fλ is non-exploitable.

Proof. Consider a node vi. If vi’s trust threshold is
outside the interval (0, 1) then either all nodes are
trusted or untrusted. If all nodes are trusted, there can
be no untrusted collusion and fλ is (vacuously) non-
exploitable. Similarly, if vi’s trust threshold is larger
than one, then all nodes are untrusted and no collusion
can change that outcome. If either holds for any node

vi, fλ is non-exploitable. On the other hand, if vi’s
trust threshold is within (0, 1) then vi trusts a node
vj if there is a trusted path from vi to vj . Because no
trusted path to an untrusted node exists, untrusted
nodes cannot add nodes to a trusted path. Similarly,
because untrusted nodes are never in a trusted path
to any trusted node (otherwise they would themselves
be trusted), they cannot make a node unreachable
either. From vi’s perspective, no untrusted collusion
can change trust values and this is true for any node
vi. Therefore, fλ is non-exploitable.

The binary nature of the toy reputation function
fλ implies that trust from different paths along a
reputation graph cannot be merged. If many vertices
have trivial interactions with vi, this function cannot
combine the many small transactions into a single
rating. It also does not capture the observation that
trust grows with time.

Trust builds up over time with repeated successful
interactions. Every successful interaction increases
the reputation information available and those small
increments slowly increase the trust ratings. Each ver-
tex has a different adversity to risk and will increase
the reputation of others differently after every inter-
action. However, it is possible to prudently increase
those ratings while simultaneously decreasing one’s
risk exposure by capturing part of the trust flow along
different paths.

Take eBay’s reputation system as an example. It
uses a single global trust value for each party and is
therefore consensus-based. Our impossibility theorem
shows that, because of this limitation, eBay’s system
can be manipulated by untrustworthy parties. At
the same time, our possibility theorem shows that, if
the ratings were displayed only after a user logged in,
the system could be personalized for that user and
overcome this limitation. For a non-trivial system,
such as eBay’s, the only way to prevent manipulation
is to personalize the system for each user.

We proposed just such a reputation system, called
TrustDavis, for online markets like eBay’s [4]. Trust-
Davis realizes a non-trivial, non-exploitable reputation
function. We refer the reader to that text for a com-
plete description of a non-binary reputation function
that monetizes trust values.
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4 Discussion and Related Work

Reputation systems [14, 13] and the related topic of
“trust management” have received a lot of attention
from the computer science community. A good survey
on trust from this point of view can be found at [10].

There is a close relationship between reputation
functions and reputation systems [14]. To be of prac-
tical use, reputation systems must aggregate informa-
tion about each agent’s past history into an easy-to-
use format. It is usually easier to perform a single
aggregation for all users. However, this is not a re-
quirement. The view that producing a single set
of aggregation results for all users is the only way
to aggregate the past history is precisely the single
worldview fallacy. We do not imply that a single
global worldview is not useful; to the contrary, it
is very useful. However, it has limitations that can
be overcome if one personalizes the results obtained
(See Definition 2.7). Furthermore, personalizing the
results obtained does not mean discarding informa-
tion. Ranking systems such as the ones considered
in [2] can be changed to provide personalized results
for many e-commerce applications and multi-agent
systems. There need not be a single ranking of alter-
natives, each party should be allowed to have their
own preferences.

Non-exploitability just means that the trusting
party is able to arbitrarily control how much trust she
places on others, no matter what world setting she
faces. This is an important characteristic of real-world
trust that is captured by non-exploitable reputation
functions. Non-exploitable reputation functions and
systems output personalized worldviews, one view for
each agent. Non-exploitability is what makes them
more useful and easier to understand. How would you
use trust if you could not control how much trust you
could place in others? This important property has
been overlooked by the literature.

Our definition of normalization (Definition 2.6) does
not limit our characterization of trust. Cheng and
Friedman partition reputation functions into symmet-
ric, those whose output is solely dependent on edges,
or actual interactions, and asymmetric, those whose
output is computed with respect to a distinguished
node [3]. The isomorphism property we use to define

normalization is analogous to the isomorphism prop-
erty presented in [2] and the definition of a symmetric
reputation function. Symmetric functions are subject
to Cheng and Friedman’s impossibility result. Asym-
metric functions rely on nodes labels that encode
extrinsic information. In other words, asymmetric
functions correctly encode trust only if they were
correctly constructed from previously known trust
information. This reputation-bootstrapping [11] is
a form of the chicken and egg problem. Normaliza-
tion avoids precisely this problem. The importance of
normalization should not be played down because it
seems too restrictive [3]: it is an essential requirement.

Reputation functions that are not normalized can
be easily mapped to normalized functions. Our re-
sults hold given the appropriate mapping of the dif-
ferent domains. Furthermore, our possibility theorem
contradicts previous results. Specifically, Cheng and
Friedman show that “There is no symmetric sybil-
proof nontrivial reputation function” because they
did not consider personalized reputation functions [3].
Here, we show that there do exist normalized non-
exploitable nontrivial personalized reputation func-
tions. Elsewhere, we have shown that it is possible to
build a practical trust system from such reputation
functions [4]. Cheng and Friedman’s misconception
would be hard to dispel without the intuitive under-
standing of trust developed in this paper.

There is a large body of literature on trust from
a variety of disciplines. Alternative definitions in a
computational setting have been proposed for both
trust [12] and distrust [8], and an interesting attempt
to classify all the different points of view can be found
in [1]. Our definition is closely related to the one found
in the encompassing work of Gambetta [7]. However,
our definition not only observes the link between trust
and risks that depends on the behavior of others,
but also makes clear the fundamental connection be-
tween trust and utility. This link casts light in the
trust transitivity problem and shows how trust can
be monetized.

Further testament to the usefulness of the formal
definitions proposed comes from their breadth. Our
definition of a world provides a very flexible trust
transitivity framework and encompasses many of the
settings found in the trust propagation (or transitivity)
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literature [4, 9, 8, 15]. Despite the opposing results,
we feel that the aims of our work most closely resemble
those of [2] and [3].

5 Conclusion

Humans have an intuitive understanding of trust and
are very proficient at using it as a tool to help them in
their daily interactions with others. To make online
interactions easier for users, a number of internet
websites and peer-to-peer networks provide systems
that explicitly attempt to capture the concept of trust.
However, many of the systems in use today assign
a single universal trust rating to each participating
party. This implies that these systems are inherently
vulnerable to manipulation by malicious users and
are, therefore, not as useful to the end users as they
could be.

Non-exploitable systems that do not provide a sin-
gle universal trust rating, but that can change the
trust ratings assigned to an individual, depending
on domain and on who is asking the question, resist
malicious manipulation. These systems are inherently
more intuitive than the systems currently in use, and
will become more useful tools to end users who seek
help in dealing with the online world.
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