Is the Cure Worse than the Disease? A Large-Scale
Analysis of Overfitting in Automated Program Repair

Edward K. Smith™
“University of Massachusetts
Ambherst, MA, USA

Earl T. Barr-

*University College, London
London, UK

Claire Le Gouest Yuriy Brun®

fCarnegie Mellon University
Pittsburgh, PA, USA

{tedks, brun}@cs.umass.edu, e.barr@ucl.ac.uk, clegoues@cs.cmu.edu

ABSTRACT

Recent research in search-based automated program repair tech-
niques has shown promise for reducing the significant manual effort
required for debugging. This paper addresses a deficit of earlier
evaluations of automated repair techniques caused by repairing
programs and evaluating generated patches’ correctness using the
same set of tests. Since tests are an imperfect metric of program
correctness, evaluations of this type do not discriminate between
correct patches, and patches that overfit the available tests and break
untested but desired functionality. This paper evaluates two well-
studied repair tools, GenProg and TSPRepair, on a 956-bug dataset,
each with a human-written patch. By evaluating patches on tests
independent from those used during repair, we find that the tools
are unlikely to improve the proportion of independent tests passed,
and that the quality of the patches is proportional to the coverage
of the test suite used during repair. For programs with fewer bugs,
the tools are as likely to break tests as to fix them. In addition to
overfitting, we measure the effects of test suite coverage, test suite
provenance, starting program quality, and the difference in qual-
ity between novice-developer-written and tool-generated patches
when quality is assessed with an independent test suite from patch
generation. We have released the 956-bug dataset to allow future
evaluations of new repair tools.

1. INTRODUCTION

Automated program repair techniques [3,11, 15, 16,23, 25, 28,
31,32,34,38,41,42,45,52,54,55] hold great potential to reduce
debugging costs and improve software quality. For example, Gen-
Prog quickly and cheaply generated patches for 55 out of 105
C bugs [28], while PAR showed comparable results on 119 Java
bugs [25]. While some techniques validate patch correctness with
respect to user-provided or inferred contracts [23,38,41,54], a larger
proportion use test cases. The most common prior evaluations of
automatic repair have provided evidence of techniques’ feasibility
with respect to this test-case-based definition of patch correctness
(e.g., [15,30,38,41,54]).

However, in practice, a test suite is never exhaustive [46], and
repair techniques must avoid breaking undertested functionality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

However, when repair technique evaluations use the same test cases
or workloads to both construct the patch and to validate its cor-
rectness, they fail to measure whether the repair technique breaks
functionality. In our review of the literature, prior evaluations of
automated repair techniques that relied on test cases or workloads
all suffered from this deficit, failing to evaluate patch quality inde-
pendently of the test cases used to construct the patch. Research
performed concurrently with ours, e.g., [45,58] has begun to con-
sider independent measures of quality, though less extensively than
we do here. And while some evaluations have used humans to mea-
sure repair acceptability [25] and maintainability [18], unlike our
work, they did not directly evaluate patch correctness.

We term the repair techniques affected by this observation — ones
that use test cases or workloads in patch construction — generate
and validate (G&V) techniques. In this paper, we focus on G&V
techniques. As we describe further in Section 2.2, G&V techniques
are worth our investigation because they have broad applicability to
mature, deployed, legacy software. Investigating other approaches,
such as synthesis-based repair [23,41, 54][[claire’s remembering
the other citation to add]] techniques, is also of great value, but is
outside the scope of this paper as it requires a different methodology
and a focus on different kinds of input properties than is appropriate
for G&V techniques.

Our contribution is an accurate, large-scale, controlled investiga-
tion of GenProg [30] and TSPRepair [43,44], both test-case-guided,
search-based automatic program repair tools with freely available
implementations that scale well to large programs. The evaluation
identifies when these techniques break functionality despite produc-
ing patches that pass all test cases used during patch construction.
We do this by using multiple test suites: one suite to construct the
patch and another to evaluate the patch. To borrow from machine
learning vocabulary, we use one test suite as “training” data to con-
struct a patch, and another as “evaluation” or “held-out” data to
evaluate the quality of the patch, specifically checking that it does
not break existing functionality. Patches that are overly specific to
the training tests and fail to generalize to the held-out tests overfit
the training tests. Techniques that produce overfitting patches tend
to fix certain program behavior while breaking other behavior.

The key goals of our study are to (1) evaluate the quality of
automated repair patches independently of their construction, and
(2) measure the effects of properties of the test suite used for patch
construction on patch quality. This is only possible on small, ex-
haustively testable programs. Using exhaustively testable programs
is thus a critical requirement for our study: each program must
be equipped with multiple independent exhaustive test suites so
that patches can be evaluated for correctness independently from
the suites used in patch construction. We also require a large cor-
pus of programs to be repaired to support a large-scale evaluation

mailto:tedks@cs.umass.edu,e.barr@ucl.ac.uk,clegoues@cs.cmu.edu,brun@cs.umass.edu

that enables statistically significant claims. We therefore produce
a dataset for our evaluation by collecting 956 student-written pro-
grams with defects, submitted as homework in a freshman pro-
gramming class, and all with student-written, bug-fixing patches.
We release this dataset to foster better evaluation of future auto-
mated repair tools: http://repairbenchmarks.cs.umass.edu/
IntroClass/. Each program specification is accompanied by two
independent test suites: a black-box test suite written by the course
instructor to the specification, and a white-box test suite constructed
using the symbolic executor Klee [10].

Using larger, real-world programs written by professional de-
velopers is desirable for evaluating scalability and applicability to
complex program behavior, but these properties have been evalu-
ated previously (e.g., [28,42]) and are not our focus. Using small
programs is a threat to the generalizability of our results, but this
is a trade-off we make because evaluating the properties of repair
we are interested in is only possible on programs with exhaustive
test suites. Understanding repair techniques at this scale is useful
to better our understanding the repair techniques in general.[[I find
this paragraph a bit defensive, and repetitive, possibly move to
threats? Would get us to the point a little faster.’]]

To the best of our knowledge, this is the first systematic effort to
evaluate the correctness of automated program repair with respect to
fully independent measures. We measure overfitting and character-
ize repair quality along several previously unexplored dimensions,
including test suite coverage, quality, and provenance. We also
explicitly compare automatically-generated and novice-developer-
written patches with respect to functionality, as opposed to human
judgments.

While our dataset is homogenous in that all our programs, bugs,
and patches are short and written by beginning programmers, it is
rich in other ways, such as the availability of human-written patches,
and a wide range of versions that fail multiple tests. The programs’
small sizes, well-defined requirements, and numerous varied human
implementations enable a comprehensive, controlled evaluation of
how test suite coverage and provenance, patch minimization, and
bug complexity affect repair quality. Since the repair techniques
evaluated in this paper rely on a pool of candidate source code lines
elsewhere in the program, we were initially concerned that the pro-
grams’ small size will impede repair construction. However, we
found that both techniques were often able to produce patches, and
that increasing the pool of candidate source code lines showed nei-
ther an increase in repair construction, nor a decrease in overfitting
behavior. Our study increases the understanding of how, why, and
under what circumstances search-based repair succeeds and fails,
which would be more difficult on large, complex programs, where
direct, large-scale experimental comparison is dramatically harder.
We find that:

e As the number of training test failures increases, the probability
of GenProg and TSPRepair producing a patch decreases.

e Both tools overfit to the training test suite used to guide patch
construction, often breaking undertested functionality. Patch
minimization does not reduce this effect.

e Test suite coverage is critically important to patch quality. Both
tools produce patches that overfit more when given lower-coverage
training suites.

e Both tools are more likely to break undertested functionality
when repairing programs that have fewer defects. In these cases,
the “patch” is worse than the un-patched program.

e Human-generated black-box, requirement-based test suites are
significantly better for use in automatic repair than branch-cover-
age-maximizing white-box test suites generated using KLEE.

e Novice-developer-written patches also overfit to the test suites,
more so than tool-generated patches guided by high-quality
black-box test suites, but less so than those guided by the white-
box test suites.

o Since GenProg and TSPRepair are nondeterministic, they can
generate multiple patches for the same bug. When white-box
tests are used as the training suite, combinations of GenProg
patches perform statistically significantly better than individual
GenProg patches, but in all other cases there is no significant
improvement in using a combination of patches. Combinations
of patches never outperform human-written patches.

Additionally, we contribute an evaluation methodology and a novel
dataset that enables large-scale, controlled evaluations of the factors
contributing to the quality of automatic repair.

The rest of this paper is structured as follows. Section 2 discusses
automated repair. Section 3 describes our 956-bug dataset. Section 4
conducts a series of experiments measuring how the quality of inputs
to automatic program repair affects the output patches. Section 5
presents a case study demonstrating overfitting. Finally, Section 6
acknowledges threats to the validity of our results, Section 7 places
our work in the context of related research, and Section 8 summa-
rizes our contributions.

2. AUTOMATED PROGRAM REPAIR

Automatic repair techniques can be classified broadly into two
classes: (1) Synthesis-based techniques use constraints to build
correct-by-construction patches via formal verification or inferred or
programmer-provided contracts or specifications (e.g., [23,41,54]
[[claire is adding the other citation]]). (2) Generate-and-validate
(G&V) techniques create candidate patches (often via search-based
software engineering [22]) and then validate them, typically through
testing (e.g., [3,11,12,15,16,25,32,34,38,42,45,52,55,56]. This
paper focuses on G&V techniques. Section 2.1 defines this class,
Section 2.2 explains the reasons for our focus, and Section 2.3
discusses how we improve on prior evaluations.

2.1 Generate-and-validate program repair

G <&V repair works by generating multiple candidate patches that
might address a particular bug and then validating the candidates to
determine if they constitute a repair. In practice, the most common
form of validation is testing. A G&V approach’s input is a program
and a set of test cases. The passing tests validate the correct, re-
quired behavior, and the failing tests identify the buggy behavior
to be repaired. G&V approaches differ in how they choose which
locations to modify, which modifications are permitted, and how the
candidates are evaluated.

Of all existing G&V techniques, GenProg [28,56], TSPRepair [43],
and AE [55] are the only publicly available repair tools that both
repair programs written in C and target general-purpose bugs (as
opposed to focusing on only one domain of bugs, such as concur-
rency bugs or integer overflow bugs). In this paper, we use GenProg
and TSPRepair as exemplars of G&V program repair. (AE is deter-
ministic, which makes it different from GenProg and TSPRepair, so
our experimental methodology does not apply to AE, but we do find
that AE similarly overfits the tests used for patch construction, as
Section 4.2 explains.)

GenProg [28, 56] uses a genetic programming heuristic [27].
Given a buggy program and a set of tests, GenProg generates a
population of random patches and uses the number of tests each
patch passes as its fitness score to inform a weighted random selec-
tion of a subset of the population to propagate into the next iteration
of the algorithm. These patches are recombined and mutated to

http://repairbenchmarks.cs.umass.edu/IntroClass/
http://repairbenchmarks.cs.umass.edu/IntroClass/

form new candidates using genetic programming mechanisms, until
either a patch passes all tests, or a preset time or resource limit is
reached. Because genetic programming is a random search tech-
nique, GenProg is typically run multiple times on different random
seeds to repair a bug.

TSPRepair [43] uses random search in place of GenProg’s genetic
programming approach to traverse the infinitely large search space
of candidate solutions. Further, instead of running an entire test
suite for every patch, TSPRepair uses heuristics to select the most
informative test cases first and stops running the suite once a test
fails. TSPRepair is more efficient than GenProg in terms of time
and test case evaluations [43]. The same approach is also called
RSRepair [44], and we refer to the original algorithm name in this
paper. [[we never said anything about single edit patches!]]

There are three key hurdles that G&V must overcome to find
patches [55]. First, there are many places in the buggy program
that may be changed. The set of program locations that may be
changed and the probability than any one of them is changed at
a given time describes the fault space of a particular program re-
pair problem. GenProg and TSPRepair tackle this challenge by
using existing fault localization techniques to prioritize changing
program constructs that are executed exclusively by failing tests
over those that are also executed by passing tests. Second, there
are many ways to change potentially faulty code in an attempt to
fix it. This describes the fix space of a particular program repair
problem. GenProg and TSPRepair tackle this challenge using the
observation that programs are often repetitive [6, 19] and logic im-
plemented with a bug in one place is likely to be implemented
correctly elsewhere in the same program. GenProg and TSPRepair
limit the code changes to deleting constructs and copying constructs
from elsewhere in the same program. Finally, as a challenge that
applies to GenProg in particular, genetic programming is known
to lead to bloat, in which solutions contain more code than neces-
sary [21]. GenProg minimizes code bloat post-facto; prior work has
claimed that minimization reduces patches overfitting to the training
tests [30]. TSPRepair only attempts single-edit patches, and thus
does not further minimize successful patches.

GenProg and TSPRepair share sufficient common features to al-
low consistent empirical and theoretical comparisons. For example,
in our experiments, we use the same fault localization strategy and
fix space weighting schemes for both. This allows us to focus on par-
ticular experimental concerns and mitigates the threat that unrelated
differences between the algorithms confound the results. However,
the algorithms vary both in the way they traverse the search space
and in the way they evaluate candidate patches, and thus we expect
our findings to generalize to other G&V techniques, especially in
light of recent successes in modeling and characterizing the similar-
ities in G&V approaches [55].

2.2 Our focus on G&V

Our evaluation focuses on G&V approaches for two reasons:

First, while both synthesis-based and G&V repair techniques
share high-level goals (such as working reliably, applying at scale,
and producing human-readable patches), they work best in different
settings, and have different limitations and challenges. For example,
the performance of synthesis-based repair relates strongly to the
power of the underlying proof system, which is typically irrelevant
to G&V repair.

Second, G&V is particularly promising for deployed, legacy soft-
ware, because it typically does not require that the program be writ-
ten in a novel language or include special annotations or specifica-
tions. As examples, Clearview, GenProg, Par, SemFix, and Debroy
and Wong have successfully fixed bugs in legacy software. Although

new projects appear to be increasingly adopting contracts [17], their
penetration into existing systems and languages remains elusive.
Few maintained contract implementations exist for widely-used lan-
guages such as C. Further, as of March 2014, in the Debian main
repository, only 43 packages depended on Zope. Interfaces (by
far the most popular Python, contract-specific library in Debian) out
of a total of 4,685 Python-related packages. For Ubuntu, 144 out
of 5,594 Python-related packages depended on Zope . Interfaces.
Synthesis-based techniques show great promise for new or safety-
critical systems written in suitable languages, and adequately en-
riched with specifications. However, the significance of defects in
existing software demands that research attention be paid at least in
part to techniques that address software quality in existing systems
written in legacy languages. Since legacy codebases often are id-
iosyncratic to the point of not adhering to the specifications of their
host language [8], it might not be possible even to add contracts to
such projects.

2.3 Prior program repair evaluations

There have been several prior evaluations of G&V repair tech-
niques. Most such evaluations demonstrate by construction that the
technique is feasible and sufficiently efficient in practice [15, 30,
32,34,38,41,42,52,54,56], some show that the resulting patches
withstand red team attackers [42], and some consider the fraction of
a set of bugs their technique can repair [25,28, 38]. These evalua-
tions have demonstrated that G&V can repair a moderate number of
bugs in medium-sized programs, as well as evaluated the monetary
and time costs of automatic repair [28], the relationship between
operator choices and test execution parameters and success [29, 55],
and human-rated patch acceptability [25] and maintainability [18].
However, these evaluations have not used a metric of correctness
independent of patch construction, so little can be said about the
correctness of the patches.

Our evaluation measures patch correctness in a rigorous manner
independent of patch construction. We empirically examine how test
suite coverage and provenance, number of test failures, and patch
minimization affect repair effectiveness, defined by both success and
functional correctness. We perform these experiments using a much
larger set of bugs than ever before, designed to permit controlled
evaluations that isolate particular features of the inputs, such that
we can examine their effects on automatic repair.

This evaluation is a novel contribution to understanding G&V
program repair. Stressing the importance of this work, concurrent
research is starting to evaluate repair techniques in terms of over-
fitting [45, 52]. One evaluation [52] compares relifix to GenProg,
evaluating the tools’ tendency to introduce regression errors when
constructing patches. That evaluation is a step toward the indepen-
dent patch correctness evaluation we present here, but while our
evaluation uses an independent test suite to measure the quality
of the patch, this prior work uses only a subset of the test suite
consisting of those tests that do not execute any of the lines that
introduced the bug being repaired, thus ignoring specifically the
regressions most likely to be introduced by a patch. Another concur-
rent evaluation is finding that using poor-quality test suites results in
patches that overfit to those suites [45]. Our evaluation goes further,
demonstrating that even using high-quality, high-coverage test suites
still results in overfitting and finding other relationships between
test suite properties and patch quality. Finally, human examinations
of patches generated by Par and GenProg have measured acceptabil-
ity [25] and maintainability [18]. While the human judgement is
a criterion not used by the repair tools for patch construction, it is
fundamentally different from the correctness criterion we use in our
evaluation, as it is often difficult for humans to spot bugs even when

tests buggy versions

program LoC bb wbh bb wh computation
checksum 13 6 10 29 49 checksum of a string
digits 15 6 10 80 140 digits of a number
grade 19 9 9 226 224 grade from score
median 24 7 6 166 153 median of 3 numbers
smallest 20 8 8 153 118 min of 4 numbers
syllables 23 6 10 108 126 count syllables

total 114 42 53 762* 810"

*956 of the 762 bb and 810 wb buggy versions are unique.

Figure 1: The oracle implementations of the six subject pro-
grams vary in size from 13 to 24 LOC. The black-box (bb) tests
are instructor-written to cover the specification. The white-box
(wb) tests are automatically generated for complete coverage of
a reference implementation. The programs’ revision histories
contain 762 versions that pass at least one and fail at least one
bb test, and 810 versions that pass at least one and fail at least
one wb test, with a total of 956 unique buggy versions.

told exactly where to look for them [40].

3. THE DATASET

This section describes our dataset of 956 bugs in versions of
six small C programs, together with two types of tests and human-
written bug fixes. This dataset is available at:
http://repairbenchmarks.cs.umass.edu/IntroClass/

3.1 The subject programs

Our dataset is drawn from an introductory C programming class
at UC Davis with an enrollment of about 200 students. The use of
this anonymized dataset for research was approved by the UC Davis
IRB. To prevent identity recovery, students’ names in the dataset
were securely hashed, and all code comments were removed.

The dataset includes six programming assignments (Figure 1).
Each assignment requires students to individually write a program
that satisfies a provided set of requirements. The requirements
were of relatively high quality: A good deal of effort was spent
to make them as clear as possible, given their role in a beginning
programming class. Further, the students were taught to first under-
stand the requirements, then design, then code, and finally test their
submissions.

Students working on their assignments submit their code by push-
ing to a personal git repository. The students may submit as many
times as they desire, until the deadline, without penalty. On every
submission, a system called GradeBot runs the student program
against a set of black-box test cases (described next), comparing
the output against an instructor-written reference implementation.
The students learn how many tests run and how many pass, but
no other information. The grade is proportional to the number of
tests the latest submission (before the deadline) passes. Students do
not know the test cases used by the GradeBot, so when a submis-
sion fails a test, the student has to carefully reconsider the program
requirements.

3.2 Test suites and measure of patch quality

Each program has two test suites: a black-box test suite and a
white-box test suite. The instructor-written black-box test suite is
based solely on the program specification. The instructor separated
the input space into equivalence partitions and selected an input
from each partition. The white-box test suite achieves edge coverage

(also called branch or structural coverage) on the instructor-written
reference implementation. We created the white-box test suite us-
ing KLEE, a symbolic execution tool that automatically generates
tests that achieve high coverage [10]. When KLEE failed to find
a covering test suite, we manually added tests to achieve full edge
coverage.

The black-box and white-box test suites were developed indepen-
dently. They are independent descriptions of the desired program
behavior. Because students can query how well their submissions do
on the black-box tests (without learning the tests themselves), they
can use the results of these tests to guide their development. Analo-
gously, a repair tool can use the black-box tests to guide automated
repair.

We use the two test suites as one measure of the functional quality
of a patch. For example, if a human or tool used black-box tests in
generating a patch, we then evaluate how well the patch performs on
the held-out white-box test suite. If the patch passes all black-box
tests but fails some white-box tests, then the patch overfits to the
black-box tests, and fails to generalize to the held-out tests. We
can similarly measure overfitting to white-box tests by providing
them to GenProg, and evaluating resulting patches on the held-out
black-box tests. Several experiments described in Section 4 use
this method for measuring patch quality in terms of overfitting and
generalizability (the inverse of overfitting).

3.3 Buggy program versions

Because the homework is submitted to a git repository, student
submissions to GradeBot provide a detailed history of student efforts
to solve each problem. Inevitably, some submissions are buggy as
they do not satisfy all of the requirements for the assignment. We can
approximate if a submission is buggy by evaluating its performance
on the two test suites. Many, though not all, of the final submitted
versions are correct. To identify a specific buggy program version,
we pick a test suite (e.g., black-box) and find all versions that pass
at least one and fail at least one test in that suite. Overall, we
identified 762 buggy versions using the black-box suites, and 810
buggy versions using the white-box suites (Figure 1); the union of
these sets constitutes 956 unique buggy programs.

For each of the 956 versions, we ran each test and observed the
version’s behavior on that test. We observed 8,884 failures. The
overwhelming majority of errors were caused by incorrect output;
this accounted for 8,469 cases. Segmentation faults accounted for
76 test failures; other errors detected by program exit status codes
accounted for 254 errors. The remaining 85 errors were due to
timeouts, likely caused by infinite loops.

4. EMPIRICAL EVALUATION

We use the dataset from Section 3 to evaluate G&V repair via
a series of controlled experiments. Section 4.1 outlines the basic
testing procedure we use to gather our data, and gives baseline
numbers for successful patching in our dataset. Section 4.2 examines
the overfitting we observed in G&V repair tools, and explores how
various factors affect overfitting. Section 4.3 uses the human-written
patches in our dataset to see if the repair tools we evaluate overfit
more or less than novice student developers. Finally, Section 4.4
tests previously proposed avenues to combat overfitting.

4.1 Testing Method

This section outlines the testing procedure we used to evaluate
GenProg and TSPRepair.

We use each tool to attempt to repair each of the 762 program
versions that fail at least one black-box test, providing the black-box
test suite as the training suite to both tools. For each buggy version,

http://repairbenchmarks.cs.umass.edu/IntroClass/

tool runs scenarios buggy programs
15739 _ 1404 472 _
GenProg 50050 = 25.8% 3545 =46.1% 76 = 61.9%
- 19023 __ 1294 435 _
TSPRepair giges =31.2% 3535 =42.5% 753 =571%
(@
GenProg TSPRepair
100%
2 80% -
s
9]
& 60%
Q
o
>
2 20%-
©
Q.
[4]
o 20% -
0% =
T T T T T T
0% 20% 40% 60% 80% 100%
before-repair training suite passing rate
(b)

Figure 2: (a) GenProg and TSPRepair patch creation rates.
(b) GenProg’s and TSPRepair’s scenario patch creation rates
(producing at least one patch that passes all the black-box tests
in 20 attempts on different seeds) improve as the number of
passing before-repair training suite tests increased. This re-
lationship is significant for GenProg (p = 0.0106) but not for
TSPRepair.

we compute the black-box tests it passes and fails, and then sample
randomly those tests to produce 25%, 50%, 75%, and 100% subsets
of the training suite of the same pass-fail ratio (rounding up to the
nearest test). These test suite subsets represent test suites of varying
levels of coverage. We use the term scenario to refer to the pair
consisting of the buggy program version and a coverage measure.
Thus for black-box tests, there are 762 x 4 = 3,048 scenarios. For
GenProg and TSPRepair, we attempt to repair each scenario 20
times, providing a new randomly generated seed each time, for a
total of 3,048 x 20 = 60,960 attempted repairs. When a tool exits
successfully after generating a patch that passes 100% of the training
suite, we run the evaluation suite over the patch and record the result.
Because AE is deterministic, some of our experiments do not
apply to AE. AE cannot be run with different random seeds and so it
produced less data that we could use in our statistical tests. As a con-
sequence, while the results of all experiments for AE were consistent
with those for GenProg and TSPRepair, we only report results for
the AE experiments with respect to overfitting (Section 4.2).
Figure 2(a) summarizes the fraction of the time each run, each
scenario, and each buggy version was fixed by each of the two tools.
While fewer GenProg runs find patches (25.8% vs. 31.2%), it is
able to patch more scenarios (46.1% vs. 42.5%) and more distinct
buggy program versions (61.9% vs. 57.1%) than TSPRepair. In
contrast, AE is only able to fix 33.7% of buggy programs, having
only one chance to fix each. Figure 2(b) shows how the number of
black-box tests the un-patched buggy version fails affects the ability
to produce a patch. GenProg is slightly more likely to patch buggy
versions that fail fewer tests: A linear regression confirms a slight
positive trend (with significance, p = 0.0106). The trend detected
for TSPRepair is not statistically significant at o0 = 0.05 (p = 0.0624,
and thus at o = 0.1, the result is considered significant). There is no
significant relationship for AE. Based on these results, we conclude

that GenProg and TSPRepair generate patches sufficiently often to
enable further empirical experiments.

We state that we only report results with AE for overfitting, be-
cause there isn’t enough data. So, I don’t think I can say that
AE generates patches sufficiently often to enable further empirical
experiments without being inconsistent. — tks

All relationships reported in the following sections are evaluated
via linear regression, unless otherwise specified. While we give
significances where appropriate, none of the detected relationships
had large effects measured by RZ, and we do not conclude that any
of the relationships are linear.

4.2 Overfitting

Research Question 1: How often are the patches produced
by G&V techniques overfit to the training test suite available
during patch generation, and fail to generalize to a different test
suite, and thus ultimately, to the program specification?

Having shown that the repair techniques often find patches that
cause a program to pass all of the training test suite, we next eval-
uate the quality of those patches. Specifically, we are interested
in learning if G&V techniques produce patches that overfit to the
training test suite. To detect and measure this overfitting, we use the
white-box suite as the held-out suite.

We find that the median GenProg patch (which passes 100% of
the training suite, by definition) passes only 83.3% of the evaluation
suite (mean 83.5%). The median TSPRepair patch passes 67% of
the evaluation suite (mean 65%). The median AE patch passes
62.5% of the evaluation suite (mean 61.9%).

We conclude that all tool-generated patches overfit to the training
suite used in constructing the repair. For programs that are mostly
correct to begin with, GenProg and TSPRepair decrease the cor-
rectness of the program under repair, as measured by the held-out
suite.

Research Question 2: How does coverage of the training test
suite affect patch overfitting?

In practice, test suites are typically incomplete. To measure how
G <&V techniques perform when given such realistic test suites, we
use subsets of the black-box test suites as the training suite and
measure the relationship between the coverage of the training suite
and the patch’s overfitting.

For each buggy program, we use the test suite sampling procedure
from Section 4.1 to produce 25%-, 50%-, 75%-, and 100%-sized
test suites that keep consistent the pass-fail ratio of every buggy
version, but vary the test suite coverage. As before, for each tool,
we repeat this process 20 times, each time resampling the test suites
and using a different random seed.

Figure 3 shows how the coverage of the training test suite affects
the fraction of the held-out white-box tests the patched program
passes. For both GenProg and TSPRepair, higher-coverage training
suites improve the quality (reduce the overfitting) of the patch: the
patch passes more white-box tests, on average. A linear regression
confirms both positive trends (with significance, p < 0.001).

We conclude that GenProg and TSPRepair benefit from high-
coverage test suites in repairing bugs. Using low-coverage tests
suites, which are unfortunately common in practice, poses a risk of
constructing patches that overfit to that test suite.

GenProg TSPRepair
100% —

R
<
£
2 7506 =
£ 5%
7]
1]
[}
a
£ 50% L .
=1 : .
%] . H
c * |
8 . . .
T 25% H
35 . .
©
> .
)

0% — . . .

i i i i i i i 1
25% 50% 75% 100% 25% 50% 75% 100%

available training suite coverage

Figure 3: The coverage of the test suite GenProg and TSPRe-
pair uses to repair the buggy program strongly correlated
(p < 0.001) with the portion of the white-box tests the patched
program passes.

Research Question 3: How does the number of tests that a
buggy program fails affect the degree to which the generated
patches overfit?

Section 4.1 showed that the number of training tests the buggy
version fails affects a technique’s ability to produce a patch. Next,
we explore if it also affects the patch’s overfitting.

Figure 4 relates the quality of the generated patch, as measured
by its performance on the held-out white-box tests, to the number
of training black-box tests the original buggy program passes. Fig-
ure 4(a) shows that programs that passed more training tests before
repair are more likely to pass the evaluation tests post-repair. Linear
regression confirms the positive trend for both tools. However, Fig-
ure 4(b) shows that both GenProg and TSPRepair are more likely
to break held-out white-box test cases than fix them when repairing
programs that initially pass most of the black-box tests. Again,
a linear regression confirms the negative trend with significance,
p < 0.001 in both cases.

We conclude that G&V repair presents a danger when fixing high-
quality programs that pass most of their test suites. The patches are
more likely to overfit to the provided tests, breaking other, previously
correct functionality. For low-quality programs that fail many tests,
GenProg and TSPRepair do repair more functionality than they
break.

Research Question 4: How does the training test suite’s
provenance (automatically-generated vs. human-written) af-
fect patches’ overfitting?

Attempting to use low-coverage test suites to fix bugs can lead
to low quality patches. Thus one may suggest using automatic test
generation techniques to improve test suite coverage prior to repair.
Here, we evaluate if automatically generated tests (generated with
KLEE [10] as described in Section 3.2) are as effective for use by
G&V repair as human-written tests. We refer to the method by
which the tests are created as test provenance.

Figures 5(a) and 5(c) summarize the effect of test suite provenance
on GenProg-generated patch overfitting. When GenProg repaired
buggy programs using (all of) the black-box test suites as the training
suite (Figure 5(a)), its patches did well on the white-box evaluation

GenProg TSPRepair

100% —

75% -

50% —

25% -

after—repair evaluation passing rate

0% —

T T T
25% 50% 75%
before-repair training passing rate

(a)

GenProg TSPRepair

50% =

0% =

-50% =

—100% -

change in evaluation test passing rate

T T)
25% 50% 75%
before—repair training passing rate

(b)

Figure 4: While the portion of evaluation tests the patched pro-
gram passes is significantly positively correlated (p < 0.001 for
both tools) with the portion of training tests the un-patched ver-
sion passes (a), both tools are more likely to break previously
working evaluation tests for programs that pass more training
tests before repair (b); the correlation between before-repair
training suite pass rate and evaluation tests fixed is significantly
negative (p < 0.001).

tests. However, the same was not true when GenProg repaired
using (all of) the white-box test suite as the training suite, and the
black-box tests as the held-out suite (Figure 5(c)). In the latter case,
GenProg overfit significantly to the white-box tests. Figure 5(e)
directly compares the two provenance methods. A two-sample test
rejects the null hypothesis of similar distributions of the two samples,
and instead suggests that the black-box patches pass significantly
more of the white-box tests than the white-box patches do the black-
box tests (with significance, p < 0.001). Cliff’s Delta test reports a
large-magnitude effect (magnitude > 0.5).

Similarly, Figures 5(b) and 5(d) summarize the effect of test suite
provenance on TSPRepair patch quality, and Figure 5(f) directly
compares the two provenance methods. The effect is nearly identical
to GenProg, although TSPRepair has slightly worse performance,
even with black-box tests. The two-sample test rejects the null
hypothesis with significance (p < 0.001), and a Cliff’s Delta test
reports a similar large-magnitude effect (magnitude > 0.5).

We conclude that test suite provenance plays an important role in
GenProg-generated patch quality. Not all full-coverage test suites
are created equal, and some are more suited for automated repair
than others.

GenProg TSPRepair

Black-box training
white—box evaluation

Black-box training
white—box evaluation

60% 60%
40% 40%
20% 20%

0% 0%

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
(a) White-box passing rate of | (b) White-box passing rate of
GenProg patches generated with | TSPRepair patches generated
black-box tests. with black-box tests.

White—box training
black-box evaluation

White—box training
black-box evaluation

60% 60%

40% 40%

20% 20%

0% 0%
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

(c) Black-box passing rate of | (d) Black-box passing rate of
GenProg patches generated with | TSPRepair patches generated
white-box tests. with white-box tests.

100%- 100%

80%- 80%

60%- 60%

40%- 40%

20%- 20%

% of held—out tests passed
% of held—out tests passed

0%- : — 0% —
black—box white-box black-box white-box
(e) Tests GenProg used to guide | (f) Tests TSPRepair used to
repair. The line shows the me-| guide repair.
dian, and the point the mean.

Figure 5: (a) and (b): When black-box tests guided repair
search, the resulting patches did well on the evaluation white-
box tests. (c) and (d): However, the same was not true when us-
ing white-box tests to search for patches. (c) and (f): The direct
comparisons show that patches generated using the black-box
suite generalize to evaluation tests much better than patches
generated using the white-box suite. For both tools, Wilcoxon
signed-rank tests detected a significant difference, p < 0.001
with a large Cliff’s Delta in both cases.

4.3 Do tools outperform novice developers?

One of the advantages of our dataset is that every program has a
human fix associated with it, corresponding to the final submission
for each student. The students who produced the buggy programs
in our dataset are faced with a challenge similar those presented

100%

60% 80%

60%

40%

40% ——

20%
20%

% of white—box tests passed

0% 0% i —
0% 20% 40% 60% 80% 100% GenProg human TSPRepair

(2) (b)

White-box passing rate of Direct comparison. The line
human-written patches who shows the median, and the
used black-box tests. point the mean.

Figure 6: When evaluated on the held-out white-box tests,
patches generated using black-box tests are of slightly better
quality than human-written patches (b), on average. (c) com-
pares the distributions explicitly: the human-written patches
show higher variance, and while the median of the human (line)
is higher, the mean (point) is lower. TSPRepair performs worse,
with a lower median and mean than human-written patches.
The Wilcoxon signed rank test with an alternative hypothesis
that the mean of the GenProg data is higher than the mean of
the human data rejects the null hypothesis (p < 0.001), while
the same test for the TSPRepair data cannot reject the null hy-
pothesis.

to our repair tools. They write and submit code, gain information
about how many tests their code passes and fails, make a change,
and resubmit. Those who have taught introductory programming
courses know that students follow a number of search strategies
while constructing repairs, ranging from structured reasoning to
random search. This section compares the results of the automated
repair tools to the results of human repair attempts. As before, repair
tools (and now, humans) have the black-box test suite available
during repair to serve as a training suite, and the white-box tests are
held out and can be used to evaluate the quality of the repair.

Research Question 5: Do tool-generated patches overfit less
than novice developer patches?

Figure 6(a) shows that student solutions do, in fact, overfit to the
provided test suites and often fail to generalize to held-out tests.
Figure 6 compares the quality of human, GenProg, and TSPRepair
patches. The mean GenProg-generated patch trained on the same
(black-box) test suite is of higher quality than those created by the
students (although the median student patch is of higher quality
than the median GenProg-generated one). The Wilcoxon signed
rank test finds a difference between the GenProg-generated and
human-written patches (Figure 6(b)), and rejects the null hypothesis
(with high significance, p < 0.001) in favor of an alternative that
the average of the GenProg patch performance is higher, indicating
that, in fact, GenProg slightly outperforms students. However, the
improvement is only slight: The Clift’s Delta test indicates that the
effect size is negligible. While the GenProg-generated patches are
only slightly better, they also demonstrate significantly less variabil-
ity in quality than human-written patches. This is also evident in
Figure 6(b).

TSPRepair patches have both a lower mean and median passing
rate for held-out tests than human-generated patches and Genprog-
produced patches. While there is a visual difference in Figure 6(b)
between human-written and TSPRepair-generated patches, the Wil-
coxon signed rank test reports no significant difference between the
samples. As with GenProg, TSPRepair-generated patches demon-
strate significantly less variability in quality than human-written
patches.

Comparing automatically generated patches to human-written
patches might seem unfair since repair tools can only access tests
that represent a partial specification, while humans can reason ab-
stractly about the program specification. However, while humans
can reason about program faults abstractly above the level of a repair
tool, they are also subject to a large array of cognitive biases [1,33]
that can hamper their debugging effort. Repair tools have no such
biases, and will mechanically explore the solution space as guided
by their fitness function, without becoming irrationally fixated on
particular solutions.

4.4 Mitigating Overfitting

Research Question 6: Does minimizing the GenProg-
generated patches affect the specificity of the patches?

GenProg uses patch minimization, via delta debugging [57], to re-
duce code bloat. TSPRepair does not perform minimization, because
the produced patch is only ever a single edit. [[AE?]] Intuitively, a
small change to a program is less likely to encode special behavior
that handles just the training tests in a separate way. Instead, a small
change is more likely to encode a generalization of the require-
ments [56]. Thus far, all results we have described for GenProg have
used GenProg’s built-in patch minimization procedure. We now
investigate if disabling this feature makes the overfitting behavior
even worse.

We compared unminimized patches produced by GenProg to their
minimized versions in terms of the number of black-box and white-
box tests the patched versions passed. In all experiments, regardless
of the tests used, paired Wilcoxon tests show that the test-passing
rates of the minimized and unminimized patches were drawn from
the same distribution, and fail to reject the null hypothesis (p > 0.1
in all cases, after Benjamini-Hochberg correction for false discovery
rates). This indicates that minimization has no effect on how much
GenProg-generated patches overfit.

Research Question 7: Can overfitting be averaged out by
exploiting randomness in the repair process? Do different
random seeds overfit in different ways?

Randomized algorithms in repair tools affords a unique oppor-
tunity: Even if patches do overfit to their test suites, it is possible
that a group of patches better represents the desired program behav-
ior than an individual patch. Specifically, if each patch in a group
encodes most of the desired behavior, even if each one overfits on
some subset of that behavior, as long as the overlap in the patches’
overfitting is small, the group voting on the behavior may outper-
form each individual patch. This n-version patch may provide an
avenue to mitigate overfitting. Human-written code typically lacks
sufficient diversity [26] to enable n-version programming [13], but
randomized G&V repair may not.

To create the n-version program %,, we: For each buggy version-
test suite subset pair &, run GenProg on P, 20 times. If fewer than

100%-

80%:- . . .

60%-

40%- —— 1

white—box passing rate

Figure 7: Tool-generated patches and n-version programs
made up of those patches perform worse than humans-written
patches, on average. N-version GenProg programs under-
perform even the individual GenProg patches, and n-version
TSPRepair programs perform negligibly worse than individ-
ual TSPRepair patches while not statistically differing from
human-written patches.

three of the runs result in a patch, we exclude this pair from this
experiment. We call these (n > 3) patched versions Q’pl ... QP;}. Next,

we create a new program, %, that on input i, runs each of T; Py
on i, and returns the output frequently returned by output by those
program. If two or more return values tie, 7, returns one at random.

Figure 7 shows that n-version patches constructed from either
tool’s output do not perform statistically significantly better than
either individual patches or human-written patches. The only ex-
ception are white-box trained GenProg patches. For this case, a
Wilcoxon rank-sum test detects a significant difference between the
individual patches and n-version patches (p < 0.001), but the Cliff’s
effect size is small.

We conclude that when test suites enable a tool to produce qual-
ity patches, there is insufficient diversity in the patches to further
improve quality. However, when repair tools produce poor quality
patches, diversity sometimes provides a modest benefit. N-version
programming may indeed provide an avenue to mitigate the worst
cases of overfitting.

5. CASE STUDY

Test suite provenance had the largest effect on the quality of
resulting automatically-generated patches. This section describes
one instance of a buggy student program and two patches that Gen-
Prog produced for it to highlight the ways that the automatically-
generated white-box tests can lead the patch search process astray.
The median homework assignment asks students to produce a C
function that takes as input three integers and outputs their median.
Figure 8 shows the test suites, both black- and white-box, used to
evaluate both the student submissions and GenProg patches. The
students had access to neither suite while completing the assign-

ment, beyond their program’s performance on the black-box tests;
for the purposes of this discussion, GenProg had access to only the
white-box suite. We use the black-box suite to evaluate final patch
quality.

One of the student’s (non-final) submissions to the homework
system was:

int med(int nl, int n2, int n3) {

w N

if ((nl==n2) || (nl==n3) ||
(n2<nl && nl<n3) || (n3<nl && nl<n2))
return nl;

o) if ((n2==n3) || (nl<n2 && n2<n3) ||
6 (n3<n2 && n2<nl))
return n2;

8 if (nl<n3 && n3<n2)
9 return n3;

10 %

This submission is close to correct. Despite its incorrect logic
(e.g., the equality checks on lines 2 and 5), it passes five of the
six white-box and six of the seven the black-box tests. It does not
return any answer for the fifth black-box and second white-box tests,
where n3 is the median and n1 > n2.

Given this program and the white-box suite, GenProg generated
several patches of varying quality. One such low-quality, GenProg-
patched program is:

1 int med(int nl, int n2, int n3) {

2 if ((nl==n2) || (nl==n3) || ((n3<nl) && (nl<n2)))
3 return nl;

| if (n2<nl)

o) return n3;

6 if ((n2==n3) || ((nl<n2) && (n2<n3)) ||

((n3<n2) && (n2<nl)))
return n2;
9 if ((nl < n3) && (n3 < n2))
return n3;

o)

}

One of the conditions in the check on line 2 have been removed,
such that this version returns nl as the median if it is coincidentally
equal to either n2 or n3, or if it is actually the median and n3 < n2.
If n1 is not the median, but n2 < nl (the check moved to line 5),
this code will (possibly but not necessarily incorrectly) return n3.
The rest of the logic is unaffected.

This patch addresses the original problem in the student’s code, at
least with respect to the white-box suite. To summarize, this code is
correct for inputs in which: n1 is the median and n3 < n2, n2 is the
median while being greater than nl, or n3 is the median and n2 <=
nl. Although this code passes all of the white-box tests (improving
on the original student submission), it passes fewer black-box tests
than the original, failing tests 3 and 6 in Figure 8.

This patch is an excellent example of overfitting the fitness func-
tion, and highlights weaknesses in the white-box test suite: Many
of the inputs have repeated elements. As a result, the student’s
otherwise logically incorrect equality checks on lines 2 and 5 of
the original submission mask the larger problems in the low-quality
patch.

Running GenProg with different random seeds can lead to differ-
ent patches for the same bug. For example, for this buggy program,
GenProg also produced a patch that leads to:

1 int med(int nl, int n2, int n3) {
2 if ((nl==n2) || (nl==n3) || ((n2<nl) && (nl<n3)) ||
((n3<nl) && (nl<n2)))
3 return nl;
if ((n2==n3) || ((nl<n2) && (n2<n3)) ||
((n3<n2) && (n2<nl)))
return n2;
if ((nl < n3) && (n3 < n2))

oy Ul H

3 return n3;
else

10 return n3;

}

The incorrect equality checks on lines 2 and 4 remain. Neither
test suite adequately rooted out this particular logic bug. However,
this patch inserted a copy of the return n3 into the else block of
the last set of conditions, which seek to determine whether n3 is the
median. Ignoring the equality checks, this is actually a reasonable
solution, because by that point, the only remaining option should be
that n3 is a median.

Before submitting the final version, the student rewrote the logic
considerably, eliminating the equality checks on lines 2 and 4 and
properly handling the last set of conditionals:

int med(int nl, int n2, int n3) {

2 if ((n2<=nl && nl<=n3) || (n3<=nl && nl<=n2))
3 return nl;

4 if ((nl<n2 && n2<=n3) || (n3<=n2 && n2<nl))

o) return n2;

if ((nl<n3 && n3<n2) || (n2<n3 && n3<nl))

return n3;

o}

In this example, GenProg solutions overfit to the test suite, while
the human-written patch is more general. This example highlights
weaknesses in the white-box test suite, which fails to encode key
behavior. This raises interesting questions about the potential of
automatic test case generation to augment the input given to G&V
repair techniques; more work is required to improve the quality of
the output of such techniques before the two approaches can be
usefully integrated.

black-box tests | white-box tests

med (2, 6, 8) = 6 med (0, 0, 0) =0
med(2, 8, 6) =6 med(2, 0, 1) =1
med(6, 2, 8) =6 med (0, 0, 1) =0
med(6, 8, 2) =6 med(0, 1, 0) =0
med (8, 2, 6) = 6 med(0, 2, 1) =1
med (8, 6, 2) = 6 med (0, 2, 3) =2
med(9, 9, 9) =9

Figure 8: White- and black-box suites for median.

6. THREATS TO VALIDITY

Our experiments may not generalize. We only experiment with
GenProg and TSPRepair [[AE!!!]], two of several G&V repair tech-
niques [55], and our results may not extend to other automatic
program repair mechanisms. Our subject programs are small stu-
dent programs, with fairly small test suites. While these are ex-
perimentally interesting in that they provide a very large set for
conducting controlled trials, the programs’ small sizes may affect
the ability to find diverse patches. We ran 20 seeds per repair effort,
arelatively small number by the standards of metahueristic search
algorithms. More attempts may have revealed more solutions. Fi-
nally, we used the recommended GenProg parameter set defined in
previous work [29]; a full parameter sweep is outside the scope of
this investigation.

We release our dataset, including all the buggy versions, human-
written solutions, and test suites. This makes our experiments re-
peatable. However, parts of the creation of the dataset were manual.
While the white-box suites were generated automatically to the ex-
tent possible, and black-box suites were generated by a rigorous

manual analysis of the requirements, at least the latter is subject
to human interpretation. Thus, a replication of our experiments on
different programs or with different test suites on our programs may
be affected by human subjectivity and may produce different results.

GenProg, TSPRepair, and many other related repair techniques
rely on randomized algorithms. Evaluating systems that involve
randomized algorithms is particularly difficult and requires paying
special attention to the sample sizes, statistical tests, cross-validation,
and uses of bootstrapping. Our work is consistent with the guidelines
for evaluating randomized algorithms [4] to enhance the credibility
of our findings. Specifically, we used a large sample of 956 buggy
student programs, attempted to control for a variety of potential influ-
encers in our experiments, and used fixed-effects regression models
and two sample tests along with false-discovery rate correction to
lend statistical support to our findings.

7. RELATED WORK

Empirical studies of fixes of real bugs in open-source projects can
help tool designers select change operators and search strategies [24,
58].

Some automated repair techniques focus on a particular defect
class. Certain classes of security vulnerabilities, such as buffer
overruns, have received especial attention [49,51]. Templated repair
can address unsafe integer use in C programs [15]. AFix uses static
analysis to address single-variable atomicity violations [23]. Lin and
Kulkarni address deadlock and livelock defects [31], and Grail [32]
attempts to fix general concurrency errors using a context-aware
synthesis. The ARMOR tool [11] replaces buggy library calls with
different calls that achieve the same behavior. Alkhalaf ez al. address
input validation and sanitization [3]. relifix uses a set of templates
mined from regression fixes to automatically patch regression bugs.
By contrast, GenProg is more general and has addressed security
and non-security bugs.

User-provided code contracts, or other forms of invariants, can
help to synthesize correct-by-construction patches, e.g., via AutoFix-
E [41, 54] (for Eiffel code) and SemFix [38] (for C). DirectFix [34]
aims specifically to synthesize minimal patches specifically to less
prone to overfitting, but only works for programs with a subset
of language features, and has only been tested on small (median
hundreds LoC) programs. These techniques have the benefit of
correctness proofs, but require the additional human burden of pro-
viding the contracts, and inherit the limitations associated with the
underlying proof system. Synthesis techniques can also construct
new features from examples [14,20], rather than address existing
bugs.

GenProg [28, 30, 56] is representative of G&V approaches, as we
define in Section 2.1. Our work does not create a new bug-fixing
technique, but rather evaluates existing techniques in a new way
to expose previously hidden limitations to G&V program repair.
Our findings may extend to other search-based or test suite-guided
repair techniques (e.g., [5, 16,25, 34, 38,39,42,55]). Section 2.3
has already discussed previous evaluations of G&V techniques.
Monperrus [37] recently discussed the challenges of experimentally
comparing program repair techniques. For example, the selection of
test subjects (defects) can introduce evaluation bias. Our evaluation
focuses precisely on the limits and potential of repair techniques on a
large dataset of defects, controls for a variety of potential influencers,
and accounts for statistical analysis of our results, addressing some
of Monperrus’ concerns [37].

Genetic programming tends to produce extraneous code that does
not contribute to the fitness of the solution [21, 50]. GenProg at-
tempts to mitigate this through solution minimization. Overfitting
is also a well-studied problem in machine learning [36]. Our ex-

periments on patch minimization and overfitting suggest that there
the two are unrelated, which is consistent with other results in ma-
chine learning [47]. To the best of our knowledge, ours is the first
consideration of this relationship in the domain of program repair.

Search-based software engineering [22] adapts search methods,
such as genetic programming, to software engineering tasks, such as
developing test suites [35, 53], finding safety violations [2], refactor-
ing [48], and project management and effort estimation [7]. Good
fitness functions are critical to search-based software engineering.
Our findings indicate that using test cases alone as the fitness func-
tion leads to patches that may not generalize to the program require-
ments, and more sophisticated fitness functions may be required for
search-based program repair.

N-version programming [13] combines multiple different pro-
grams trying to solve the same problem in the interest of achieving
resiliency and correctness through redundancy. It has been shown to
work poorly with human-written systems because the errors humans
make do not appear to be independent [26]. Using n-versions with
GenProg-generated patches did improve on individual patches pro-
duced using low-quality test cases, but still failed to fully generalize
to the desired behavior.

8. CONCLUSIONS AND IMPLICATIONS

G &V automated repair shows promise for reducing the manual

bug-fixing burden and improving software quality. However, if
these techniques are to gain significant practical traction, we must
augment feasibility demonstrations with qualitative evaluations that
address the techniques’ quality and applicability. In this paper,
we systematically evaluated the factors affecting the output qual-
ity of GenProg and TSPRepair [[AE???]], which we believe to be
representative of G&V techniques, through a controlled and com-
prehensive evaluation on a large set of student-written programs
with naturally occurring bugs and human-written patches. Based on
our findings, we conclude that the remaining research challenges
include:
Repair techniques must go beyond testing on the training data
to characterize functional correctness. GenProg produced a patch
for more than half (61.9%), and TSPRepair produced a patch for
almost a third (31.2%), [[AE?]] of the bugs in our dataset. The
ability to produce a patch was correlated with input program quality,
as measured by the test suites. However, those patches tended to
overfit to the test suite used to generate the patch. Interestingly, the
novice human programmers (students) also overfit to the provided
test cases. When using requirements-based tests, GenProg overfit
less than the humans. These results highlight both the significant
promise of automatic repair and the fact that more work is needed
to improve their output quality.

To correct for this, we propose that future evaluations of G&V
repair tools withhold some proportion of tests from the vantage
point of their repair tool, at least one of which shares code-under-
test with the tests which expose the buggy behavior. This is similar
to the machine learning evaluational technique of cross-validation,
and provides a higher level of confidence that a repair technique is
able to repair isolated defects without introducing regressions in the
codebase.

Automatic repair should be used in appropriate contexts. Both
test suite coverage and input program quality affected the quality
of the automatic patches. Higher coverage test suites lead to more
general patches, while patches produced for higher quality programs
were more likely to break existing functionality. This suggests
that automatic repair techniques might be best applied early in the
development lifecycle, though unfortunately, this is the time when
the program quality itself is likely low (reducing the likelihood of

repair success), and the test suite is least likely to be comprehensive.
Different repair techniques are likely to be useful at different times,
and more study is needed to mitigate these tensions.

The quality of repair test suites should be measured and im-
proved appropriately. The provenance of the test suites — auto-
matically-generated or human-written — had a striking impact on
patch quality. Automatic test-input generation techniques should fit
naturally into a tool chain for automatic repair, particularly when
user-provided test cases fail to fully cover the program functional-
ity, or when critical functionality should be independently tested
post-repair, to ensure that overfitting has not occurred. These results
suggest that more work is needed to fully understand and character-
ize test suite quality beyond coverage metrics alone.

Patch diversity might improve repair quality. Despite their rela-
tively lower quality, the patches generated using automatically gen-
erated tests demonstrated sufficient functional diversity to improve
on the patched programs via plurality voting. The patches generated
on the human-written tests, however, showed minimal such diversity.
Plurality voting may thus mitigate the risks of low-quality test suites,
in the appropriate settings.

While G&V techniques have not yet become a silver bullet of
program repair, in some cases and settings, they already outperform
beginner human developers. Our results suggest that if several short-
comings are addressed, there is significant promise that automated
repair techniques can be impactful and helpful parts of the software
development process.

Acknowledgements

Prem Devanbu and Ming Xiao were instrumental in the creation of
an earlier version of the student programs dataset and early GenProg
experiments [9].

9. REFERENCES

[1] R. E. Adamson. Functional fixedness as related to problem
solving: A repetition of three experiments. Journal of
Experimental Psychology, 44(4):288-291, 1952.

E. Alba and F. Chicano. Finding safety errors with ACO. In
Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, pages 1066-1073, London,
England, UK, 2007.

M. Alkhalaf, A. Aydin, , and T. Bultan. Semantic differential
repair for input validation and sanitization. In International
Symposium on Software Testing and Analysis, pages 225-236,
2014.

A. Arcuri and L. Briand. A practical guide for using statistical
tests to assess randomized algorithms in software engineering.
In Proceedings of the 33rd International Conference on
Software Engineering, pages 1-10, Honolulu, HI, USA, 2011.
A. Arcuri and X. Yao. A novel co-evolutionary approach to
automatic software bug fixing. In Congress on Evolutionary
Computation, pages 162—168, 2008.

E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro. The
plastic surgery hypothesis. In Symposium on the Foundations
of Software Engineering (FSE), pages 306-317, Hong Kong,
China, November 2014.

A. Barreto, M. Barros, and C. Werner. Staffing a software
project: a constraint satisfaction approach. Computers and
Operations Research, 35(10):3073-3089, 2008.

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A Few
Billion Lines of Code Later: Using Static Analysis to Find

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9

—

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

Bugs in the Real World. Commun. ACM, 53(2):66-75, Feb.
2010.

Y. Brun, E. Barr, M. Xiao, C. Le Goues, and P. Devanbu.
Evolution vs. intelligent design in program patching.
Technical Report
https://escholarship.org/uc/item/3z8926ks, UC
Davis: College of Engineering, 2013.

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation
(OSDI), pages 209-224, San Diego, CA, USA, 2008.

A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and

M. Pezze. Automatic recovery from runtime failures. In
Proceedings of the 2013 International Conference on Software
Engineering, pages 782-791, San Francisco, CA, USA, 2013.
A. Carzaniga, A. Gorla, N. Perino, and M. Pezze. Automatic
workarounds for web applications. In Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE10), pages 237-246, Santa Fe,
New Mexico, USA, 2010.

L. Chen and A. AviZzienis. N-version programming: A
fault-tolerance approach to reliability of software operation. In
Proc. 8th IEEE Int. Symp. on Fault-Tolerant Computing
(FTCS-8), pages 3-9, 1978.

R. Cochran, L. D’ Antoni, B. Livshits, D. Molnar, and

M. Veanes. Program boosting: Program synthesis via
crowd-sourcing. In Symposium on Principles of Programming
Languages (POPL), pages 677-688, Mumbai, India, January
2015.

Z. Coker and M. Hafiz. Program transformations to fix C
integers. In Proceedings of the 2013 International Conference
on Software Engineering, pages 792-801, San Francisco, CA,
USA, 2013.

V. Debroy and W. Wong. Using mutation to automatically
suggest fixes for faulty programs. In Proceedings of the 2010
Third International Conference on Software Testing,
Verification, and Validation, pages 65-74, Paris, France, 2010.
H. Estler, C. A. Furia, M. Nordio, M. Piccioni, B. Meyer, et al.
Contracts in practice. arXiv preprint arXiv:1211.4775, 2012.
Z.P. Fry, B. Landau, and W. Weimer. A human study of patch
maintainability. In International Symposium on Software
Testing and Analysis, pages 177-187. ACM, 2012.

M. Gabel and Z. Su. Testing mined specifications. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, Cary,
NC, USA, 2012.

S. Gulwani. Automating string processing in spreadsheets
using input-output examples. In Symposium on Principles of
Programming Languages (POPL), pages 317-330, Austin,
TX, USA, 2011.

S. Gustafson, A. Ekart, E. Burke, and G. Kendall. Problem
difficulty and code growth in genetic programming. Genetic
Programming and Evolvable Machines, pages 271-290,
September 2004.

M. Harman. The current state and future of search based
software engineering. In International Conference on
Software Engineering, pages 342-357, 2007.

G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated
atomicity-violation fixing. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 389—400, San Jose, CA, USA, 2011.

https://escholarship.org/uc/item/3z8926ks

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of
existing faults to enable controlled testing studies for Java
programs. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 437-440, San
Jose, CA, USA, July 2014.

D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch
generation learned from human-written patches. In
Proceedings of the 35th International Conference on Software

Engineering, pages 802-811, San Francisco, CA, USA, 2013.

J. C. Knight and N. G. Leveson. An experimental evaluation
of the assumption of independence in multiversion
programming. IEEE Transactions on Software Engineering,
12(1):96-109, 1986.

J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.
C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each. In Proceedings of the 34th
International Conference on Software Engineering, pages
3—13, Zurich, Switzerland, 2012.

C. Le Goues, S. Forrest, and W. Weimer. Representations and
operators for improving evolutionary software repair. In
Genetic and Evoluationary Computation Conference, pages
959-966, 2012.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg:
A generic method for automatic software repair. [EEE
Transactions on Software Engineering, 38:54-72, 2012.

Y. Lin and S. S. Kulkarni. Automatic repair for multi-threaded
programs with deadlock/livelock using maximum satisfiability.
In International Symposium on Software Testing and Analysis,
pages 237-247, 2014.

P. Liu, O. Tripp, and C. Zhang. Grail: context-aware fixing of
concurrency bugs. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 318-329. ACM, 2014.

A. S. Luchins. Mechanization in problem solving: The effect
of Einstellung. Psychological Monographs, 54(6):1-95, 1942.
S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking
for simple program repairs. In Proceedings of the ACM/IEEE
37st International Conference on Software Engineering
(ICSEI5), Florence, Italy, 2015.

C. C. Michael, G. McGraw, and M. A. Schatz. Generating
software test data by evolution. IEEE Transactions on
Software Engineering, 27(12):1085-1110, December 2001.
T. Mitchell. Machine Learning. McGraw-Hill, New York,
1997.

M. Monperrus. A Critical Review of "Automatic Patch
Generation Learned from Human-Written Patches": Essay on
the Problem Statement and the Evaluation of Automatic
Software Repair. In International Conference on Software
Engineering, pages 234-242, 2014.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.
SemFix: Program repair via semantic analysis. In Proceedings
of the 2013 International Conference on Software
Engineering, pages 772-781, San Francisco, CA, USA, 2013.
M. Orlov and M. Sipper. Flight of the finch through the java
wilderness. Trans. Evol. Comp, 15(2):166—182, Apr. 2011.

C. Parnin and A. Orso. Are automated debugging techniques
actually helping programmers? In International Symposium
on Software Testing and Analysis (ISSTA), pages 199-209,
Toronto, ON, Canada, 2011.

12

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and

A. Zeller. Automated fixing of programs with contracts. IEEE
Transactions on Software Engineering (TSE), 40(5):427-449,
2014.

J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,

G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and

M. Rinard. Automatically patching errors in deployed
software. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, pages 87-102, Big Sky, MT,
USA, October 12—-14, 2009.

Y. Qi, X. Mao, and Y. Lei. Efficient automated program repair
through fault-recorded testing prioritization. In International
Conference on Software Maintenance (ICSM), pages 180-189,
September 2013.

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of
random search on automated program repair. In International
Conference on Software Engineering (ICSE), pages 254-265,
2014.

Z.Qi, F. Long, S. Achour, , and M. Rinard. An analysis of
patch plausibility and correctness for generate-and-validate
patch generation systems. Technical Report
MIT-CSAIL-TR-2015-003, MIT Computer Science and
Artificial Intelligence Laboratory, 2015.

Research Triangle Institute. The economic impacts of
inadequate infrastructure for software testing. Technical
Report NIST Planning Report 02-3, May 2002.

J. Rissanen. Modelling by the shortest data description.
Automatica, 14:465-471, 1978.

0. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class structure
of object-oriented systems. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, pages
1909-1916, Seattle, WA, USA, 2006.

S. Sidiroglou and A. D. Keromytis. Countering network
worms through automatic patch generation. IEEE Security
and Privacy, 3(6):41-49, Nov. 2005.

S. Silva and E. Costa. Dynamic limits for bloat control in
genetic programming and a review of past and current bloat
theories. Genetic Programming and Evolvable Machines,
10(2):141-179, June 2009.

A. Smirnov and T. cker Chiueh. Dira: Automatic detection,
identification and repair of control-hijacking attacks. In
Network and Distributed Systems Security, 2005.

S. H. Tan and A. Roychoudhury. Relifix: Automated repair of
software regressions. In Proceedings of the ACM/IEEE 37st
International Conference on Software Engineering (ICSE15),
Florence, Italy, 2015.

K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. Time-aware test suite prioritization. In Proceedings of
the International Symposium on Software Testing and
Analysis, pages 1-12, Portland, ME, USA, 2006.

Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer,
and A. Zeller. Automated fixing of programs with contracts. In
Proceedings of the 19th International Symposium on Software
Testing and Analysis, pages 61-72, Trento, Italy, 2010.

W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program
equivalence for adaptive program repair: Models and first
results. In Proceedings of the 28th International Conference
on Automated Software Engineering, Palo Alto, CA, USA,
2013.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.

[57]

(58]

Automatically finding patches using genetic programming. In
Proceedings of the ACM/IEEE 31st International Conference
on Software Engineering (ICSE09), pages 364-374,
Vancouver, BC, Canada, 2009.

A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software
Engineering, 28(2):183-200, February 2002.

H. Zhong and Z. Su. An empirical study on real bug fixes. In
International Conference on Software Engineering (ICSE),
Florence, Italy, 2015.

13

	1 Introduction
	2 Automated Program Repair
	2.1 Generate-and-validate program repair
	2.2 Our focus on G&V
	2.3 Prior program repair evaluations

	3 The Dataset
	3.1 The subject programs
	3.2 Test suites and measure of patch quality
	3.3 Buggy program versions

	4 Empirical Evaluation
	4.1 Testing Method
	4.2 Overfitting
	4.3 Do tools outperform novice developers?
	4.4 Mitigating Overfitting

	5 Case Study
	6 Threats to Validity
	7 Related Work
	8 Conclusions and Implications
	9 References

