What Effect does Distributed Version Control have
on OSS Project Organization?

Peter C. Rigby*, Earl T. Barr!, Christian Bird*, Prem Devanbu$, Daniel M. German’
*Concordia University, Montreal, Canada — peter.rigby @concordia.ca
fUniversity College London, London, UK — e.barr@ucl.ac.uk
SUniversity of California, Davis, USA — cbird @microsoft.com
Microsoft Research, Redmond, USA — ptdevanbu@ucdavis.edu
YUniversity of Victoria, Canada — dmg@cs.uvic.ca

Abstract—Many Open Source Software (OSS) projects are
moving form Centralized Version Control (CVC) to Distributed
Version Control (DVC). The effect of this shift on project
organization and developer collaboration is not well understood.
In this paper, we use a theoretical argument to evaluate the
appropriateness of using DVC in the context of two very common
organization forms in OSS: a dictatorship and a peer group. We
find that DVC facilitates large hierarchical communities as well as
smaller groups of developers, while CVC allows for consensus-
building by a peer group. We also find that the flexibility of
DVC systems allows for diverse styles of developer collaboration.
With CVC, changes flow up and down (and publicly) via a
central repository. In contrast, DVC facilitates collaboration in
which work output can flow sideways (and privately) between
collaborators, with no repository being inherently more impor-
tant or central. These sideways flows are a relatively new concept.
Developers on the Linux project, who tend to be experienced DVC
users, cluster around “sandboxes:” repositories where developers
can work together on a particular topic, isolating their changes
from other developers. In this work, we focus on two large,
mature OSS projects to illustrate these findings. However, we
suggest that social media sites like GitHub may engender other
original styles of collaboration that deserve further study.

I. INTRODUCTION

Large, complex software systems must be modularized to
allow for effective collaboration among developers working on
related areas and to isolate developers from changes that are
unrelated to their work [1]. Version control (VC) complements
this modularity by allowing developers to work indepen-
dently and then merge their changes with other developers’
changes [2]. The traditional, Centralized VC (CVC) model
is simple: developers work on a change and then commit it
to a central repository, merging and resolving any conflicting
changes. This centrality forces developers to constantly deal
with changes from a diverse set of developers and limits the
ability of developers to isolate their work and collaborate with
others. In contrast, with Distributed VC (DVC), there is no
inherently central repository. Each developer has a full copy
of the entire history of the system, and developers are free to
share changes between any repository, provided that at some
point the repositories had a common ancestor [3]. However,
certain repositories can become organizationally important
within the development community. With this flexibility comes

complex interactions that have not been adequately studied
by the software engineering community. In this paper, we
examine the styles of project governance that DVC can support
as well as the ways in which small groups of developers
cooperate on topic specific (i.e., “sandbox”) repositories. The
paper is organized around two research questions:

Q1: How well does DVC support the two common styles
of OSS project governance? Most large, successful OSS
projects are structured around a single developer or integrator
(a “dictator”) or a group of trusted peers (an oligarchy) [4].
Using these two governance models, we compare DVC to
CVC in terms of the number of exchanges a developer must
make to acquire the current version of the system. We develop
a hypothesis and test it in a case study comparing Linux to
FreeBSD.

Q2: What impact does DVC have on the way individual
developers and small subgroups collaborate? With a central
repository developers must discuss and reach a consensus
on which changes to include. In contrast, with DVC, each
developer has the final say in what makes it into his or
her personal repository. Like-minded developers can come
together to work on a particular topic in relative isolation. They
collaborate in a development sandbox, a set of branches that
represents a project fork that can be used by other developers
or incorporated into the repository from which “official”
releases are made. We illustrate the concept of sandboxes with
examples from Linux.

II. METHOD AND PROJECTS

We use Linux to evaluate hypotheses and questions regard-
ing advanced DVC usage because the Linux kernel project
has never used a CVC and its developers are generally very
experienced with the DVC git. As a contrast to Linux, we
select FreeBSD, which at the time of our analysis used CVS
and has now transitioned to SVN, both CVCs. While both
projects are UNIX kernels, we do not compare these projects
technically or in terms of productivity, since such comparisons
are fraught with confounds. Instead, we use them to provide
preliminary answers to our research questions. We analyzed
version control data across a 3.5 year period starting in 2005
for Linux and 2003 for FreeBSD.



The Linux Kkernel is organized as a hierarchy or chain-
of-trust. At the top of the chain, the “benevolent” dictator,
Torvalds, ultimately controls what is put into an “official”
release. Beneath Torvalds are a small number of his “lieu-
tenants” whom he trusts. Each lieutenant is responsible for
a section of the project (e.g. Miller maintains the networking
aspects of Linux) or a previous release of Linux. In turn, these
lieutenants trust a small group of individuals. Code flows from
less well-known individuals through a series of progressively
more trusted individuals. As the code moves up through the
chain-of-trust, each individual vets and signs off on it.!

The FreeBSD project is organized as a foundation or
group of peers [5]. Developers who have demonstrated their
aptitude can be voted into the foundation and receive commit
access to the central VC repository. Within the foundation,
consensus and voting determine policy and resolve controver-
sial decisions. Developers, who do not have commit access,
must convince at least one of the core developers to commit
their code. In effect, FreeBSD is an oligarchy in which core
developers have a vote, while developers outside of the core
group can only voice their opinion.

ITI. GOVERNANCE: CENTRALIZATION VS. DISTRIBUTION

We argue the following conjectures regarding VC and
project governance:

1) DVC better serves a centralized (dictatorship) social
structure.

2) CVC better serves a decentralized (community of peers)
social structure.

In this discussion, n is the number of programmers actively
working on a project. A pull occurs anytime a programmer
requests and merges another programmer’s changes into his
or her working copy or repository. A push occurs when a
programmer adds changes to a repository they do not own.
An exchange is a push or a pull. In Figure 1, we examine the
number of exchanges required for a programmer to obtain the
most recent changes under different combinations of VC and
governance.

In Figure 1a, a programmer needs only pull once to get the
most recent code base when using CVC. Figure 1b examines
the use of DVC in a peer setting. Since every programmer has
their own copy of the project, in the worst case (i.e., when
every programmer makes changes) a programmer must make
n — 1 exchanges to acquire the most recent code base. The
number of pulls in a peer group using DVC grows with the
number of programmers. For a small group, n — 1 pulls may
not be prohibitive, but once the group grows too large, the
effort required to stay up to date will become unmanageable
or, at best, tedious and time-consuming.

The exploding pull problem disappears in a project with
a strong hierarchy, centered on a dictator who is a star
programmer or integrator, as Figure 1d depicts. We use h), to
denote the “lieutenants” of the programmer p in the hierarchy

'Email exchange, 2004, http://lkml.org/lkml/2004/5/23/10

shown in Figure 1d (i.e. the developers immediately below p
in the hierarchy). This hierarchical social structure restricts the
number of other programmers with whom p makes exchanges.
Thus, p only needs to pull changes from each of his lieutenants
and from the dictator D, resulting in h, + 1 exchanges. By
definition, the dictator has the most recent changes published
outside of p’s hierarchy. Hierarchies form to keep the number
of individuals one has to deal with on a human level [6].
Furthermore, a strict hierarchy is a tree, which by definition
does not have any redundant edges. In practice, as a project
grows, h remains much smaller than the fully connected graph
—h+1<gn—-1

The number of exchanges differs for the dictator. In Fig-
ure 2a, the dictator obtains and reviews changes from all
other programmers, yielding n — 1 exchanges to ensure that
his repository is up-to-date when using CVC. Like the peer
scenario using DVC (Figure 1b), this does not scale well. In
contrast, a dictator needs only pull and review changes from
those immediately beneath him, hp, in the hierarchy when
utilizing DVC, depicted in Figure 2b. This structure relies
on a chain-of-trust in the hierarchy, such that the dictator’s
lieutenants are trusted to review and make decisions about
changes that flow through them to the dictator (as occurs in
the Linux kernel). This means the number of exchanges the
dictator requires to obtain the most recent changes remains
constant as the community of programmers grows.

Case Study

Perhaps it is not surprising that OSS developers are taking
to DVC with such enthusiasm [3]; most projects have a
very small number of developers and usually one developer
does most of the coding [7], a natural dictatorship. Here, we
examine our conjectures in the context of Linux and FreeBSD,
two large, successful, mature projects. Given the descriptions
of these projects (See Section II), we hypothesize that Linux,
which uses a DVC, is organized in a more hierarchical manner
than FreeBSD, which uses CVC.

To quantitatively test this hypothesis, we use Krack-
hardt’s [8] measure of graph hierarchy and modify it to take
the magnitude of the relationship into account. Our data source
is the VC commit logs where we use “sign-off” or “reviewed
by” tags as evidence of a hierarchical relationship.

For any pair of developers, let z be the number of times
developer X has signed off on or reviewed developer Y, and
let y be the number of times developer Y has signed off on
or reviewed developer X. For every pair of developers where
x> 0Vy > 0, the following defines the degree of hierarchy:

po [Tyl

r+y’ %

For a pure hierarchy, h = 1 and for a pure peer group
h = 0. In a pure hierarchy, no individual will review or sign-
off on any individual above them in the hierarchy. If Linux is a
pure hierarchy, nobody would ever sign-off Torvalds’ work. In
contrast, in a peer group, a pair of individuals would sign-off


http://lkml.org/lkml/2004/5/23/10

1 exchange

(a) Peers using CVC (b) Peers using DVC

Q n — 1 exchanges

1 exchange

1 exchange

@

hy exchanges

(c) Dictatorship using CVC (d) Dictatorship using DVC

Fig. 1: Exchanges required for the programmer p to obtain the most recent changes in a peer group or dictatorship for both

CVC and DVC.

n — 1 exchanges

(b) Dictatorship using DVC

Fig. 2: Exchanges needed for a dictator to update his repository
from the rest of the development team using CVC and DVC.

on each other’s work. On the continuum from pure hierarchies
and pure peer groups, the metric examines the degree to which
relationships between pairs of developers are hierarchical.

Results: We now employ the hierarchy metric h to evaluate,
in the context of this case study, whether our hypothesis holds.

The number of purely hierarchical pairs of developers (i.e.
h = 1) dominates both distributions: 73% for FreeBSD and
94% for Linux. However it is clear that FreeBSD has far fewer
purely hierarchical developer pairs. Although OSS projects
typically have a small number of core developers that do most
of the work, there is a much larger group of developers that
submit a small number of contributions. These developers do
not have the authority to sign-off on code in either Linux or
FreeBSD [5].

We examine pairs of developers who have reviewed each
other at least once (i.e. have a reciprocal relationship). Figure 3
shows that, conditioned on reciprocal relationships, FreeBSD,
whose median is » = 0.75 is again less hierarchical than
Linux at A = .96. A Wilcoxon test indicates that this result is

statistically significant at p < .001.
In light of these findings, we revise our hypothesis.

1) Hierarchical relationships dominate OSS projects. Large
OSS projects are oligarchies or dictatorships that have
a large number of external developers who do not have
sign-off authority. This hypothesis is supported by previ-
ous literature on project structure [5], [9].

2) Socially central projects using DVC (Linux) are orga-
nized in a more hierarchical manner than socially dis-
tributed projects using CVC (FreeBSD).

Our conjectures compare pure DVC to pure CVC. However,
on all projects there is a need for individual collaboration
as well as some form of centralization from which official
product releases can be made. Most DVC systems, like git or
Hg, can be set up so that a publicly shared central repository
can be pushed to by each developer’s personal repository.
We suspect that the choice of version control system will
not cause a project to change its governance structure. Future
work is necessary to understand the value of this mixed VC
configuration.

IV. DEVELOPMENT SANDBOXES

Fogel, a prominent Subversion developer, states that DVC
is much more difficult for people to grasp than CVC.> We
believe that this is because changes to a CVC always move
through the central repository (i.e. ‘up’ and ‘down’), while on
a DVC changes can move between individual developers or
between a repository shared by a group of developers. These
“sideways” exchanges represent collaboration between small,
task-focused groups of developers.

In previous work, Bird et al. [10] found that OSS devel-
opers naturally group themselves into task based groups who
disband after the task is completed. However, they did not
find evidence that these developers, who use CVC, created
branches to work on these tasks. Instead, developers working
in similar areas of the system collaborated via related threads
on the developer mailing lists. The FreeBSD project uses this

2Email, 2006, http://svn.haxx.se/dev/archive-2007-06/0780.shtml


http://svn.haxx.se/dev/archive-2007-06/0780.shtml

1.0

0.8
|

0.6

Degree of hierarchy
0.4

0.2
|
00 0 05 00D AN OO OWOM | - -~~~ - - oo

T
Free BSD

Linux

Fig. 3: Peer group vs. Hierarchy.

style of collaboration with all committers working together on
a single repository [5].

In contrast, experienced users of DVC on the Linux project
create separate repositories through which they can work on
a particular topic and later have the code promoted to a
release branch when it is finished. The “MAINTAINERS”
file for Linux contains 62 official, public git repositories that
cover 647 specific topics related to kernel development. 555
individuals maintain these topics. Many of these repositories
represent long-lived development priorities (See Table I for
example topics). These repositories are typically maintained
by a single individual; however, they represent only a small
number of the available Linux repositories. For example, on
the social media based GitHub site we see that there are
416 separate forks of Torvalds’Linux repository.> A further
3400 individuals are registered to receive updates when his
repository changes.

Linux is modularized in two ways. Like FreeBSD the
system is modularized in the directory hierarchy [1]. Unlike
FreeBSD, Linux also isolates development into sandboxes:
repositories dedicated to a particular topic.

V. CONCLUSIONS AND FUTURE WORK

We reported preliminary results relating to DVC’s effect on
project governance and collaboration among developers. Our
conjectures and case study suggest that strongly hierarchical
projects benefit from DVC, while peer groups tend to need
a central repository to reach consensual decisions. However,
most projects will lie somewhere on the continuum between

3https://github.com/torvalds/linux accessed November 2011

TABLE I: A sample of topics and sandboxes in Linux

Topic Maintainers

SCSI SUBSYSTEM
KERNEL BUILD

GFS2 FILE SYSTEM
NETWORKING [IPv4/IPv6]
9P FILE SYSTEM
INFINIBAND SUBSYSTEM
PARISC ARCHITECTURE
TIPC NETWORK LAYER
X86 ARCHITECTURE

12C SUBSYSTEM

AUDIT SUBSYSTEM
BTTV VIDEO4LINUX
CRYPTO API
DISTRIBUTED LOCK MGR

Repository

W

e e e e e e e e B RO
TR RDNWWWWWO -~ —

555

o -
2 -

Total: 647

the pure hierarchy and the pure peer group. Within this larger
governance structure, DVC allow specialized subgroups to
collaborate in a distributed manner on specific problems (i.e.
in a sandbox), while still maintaining a repository that is used
for integration and releases.

DVC has the potential to make releasing, developing, and
coordinating large software projects much less rigid than its
exclusively centralized predecessor. Future work is necessary
to understand GitHub and other online social media envi-
ronments that provide a simple and integrated way to fork
repositories allowing individuals and projects of any size to
collaborate in innovate ways.

REFERENCES

[1] 1. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a case study:
Its extracted software architecture,” in 21st ICSE, 1999, pp. 555-563.

[2] A. Sarma, Z. Noroozi, and A. Van der Hoek, “Palantir: raising awareness
among configuration management workspaces,” in 25th ICSE, 2003, pp.
444-454.

[3] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu, “The promises and perils of mining git,” in 6th Conf on
Mining Software Repositories, 2009.

[4] J. Berkus, “The 5 types of open source projects,” 2007, http://www.
powerpostgresql.com/5_types.

[5] T. Dinh-Trong and J. Bieman, “The FreeBSD Project: A Replication
Case Study of Open Source Development,” IEEE ToSEM, vol. 31, no. 6,
pp. 481-494, 2005.

[6] H. Simon, Administrative behavior: A study of decision-making pro-
cesses in administrative organizations. Free Press, 1997.

[7]1 S. Krishnamurthy, “Cave or Community? An Empirical Examination of
100 Mature Open Source Projects,” First Monday, vol. 7, no. 6-3, 2002.

[8] D. Krackhardt, “Graph theoretical dimensions of informal organiza-
tions,” pp. 89-111, 1994.

[9]1 K. Crowston, J. Howison, K. Crowston, and J. Howison, “Hierarchy and
centralization in free and open source software team communications,”
Knowledge, Technology, and Policy, vol. 18, no. 4, pp. 65-85, 2006.

[10] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent
social structure in open source projects,” in /6th FSE. ACM, 2008,
pp. 24-35.


https://github.com/torvalds/linux
http://www.powerpostgresql.com/5_types
http://www.powerpostgresql.com/5_types

	Introduction
	Method and Projects
	Governance: Centralization vs. Distribution
	Development Sandboxes
	Conclusions and Future Work
	References

