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ABSTRACT
Software has bugs, and fixing those bugs pervades the software
engineering process. It is folklore that bug fixes are often buggy
themselves, resulting in bad fixes, either failing to fix a bug or creat-
ing new bugs. To confirm this folklore, we explored bug databases
of the Ant, AspectJ, and Rhino projects, and found that bad fixes
comprise as much as 9% of all bugs. Thus, detecting and correcting
bad fixes is important for improving the quality and reliability of
software. However, no prior work has systematically considered
this bad fix problem, which this paper introduces and formalizes. In
particular, the paper formalizes two criteria to determine whether a
fix resolves a bug: coverage and disruption. The coverage of a fix
measures the extent to which the fix correctly handles all inputs that
may trigger a bug, while disruption measures the deviations from
the program’s intended behavior after the application of a fix. This
paper also introduces a novel notion of distance-bounded weakest
precondition as the basis for the developed practical techniques to
compute the coverage and disruption of a fix.

To validate our approach, we implemented FIXATION, a proto-
type that automatically detects bad fixes for Java programs. When
it detects a bad fix, FIXATION returns an input that still triggers
the bug or reports a newly introduced bug. Programmers can then
use that bug-triggering input to refine or reformulate their fix. We
manually extracted fixes drawn from real-world projects and evalu-
ated FIXATION against them: FIXATION successfully detected the
extracted bad fixes.
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1. INTRODUCTION
[? ] According to IDC [21], software maintenance cost $86

billion in 2005, accounting for as much as two-thirds of the overall
cost of software production. Developers spend 50–80% of their
time looking for, understanding, and fixing bugs [7]. Fixing bugs
correctly the first time they are encountered will save money and
improve software quality.

Researchers have paid great attention to detecting and classifying
bugs to ease developers’ work [2, 9, 12, 13, 14, 18, 30, 35, 37]. In
contrast, not much effort has been expended on bug fixes. When
testing a fix, programmers usually rerun a program with the bug-
triggering input. If no error occurs, programmers, hurried and
overburdened as they usually are, often move on to their next task,
thinking they have fixed the bug. Folklore suggests that bug fixes
are frequently bad, either by failing to cover, i.e. handle, all bug-
triggering inputs, or by introducing disruptions, i.e. new bugs. A
bad fix can decrease the quality of a program by concealing the
original bug, rendering it more subtle and increasing the cost of its
fix. Thus, detecting and correcting bad fixes as soon as possible is
important for the quality and reliability of software.

To gain insight into the prevalence and characteristics of bad
fixes, we explored the Bugzilla databases [5] of the Ant, AspectJ
and Rhino projects under Apache, Eclipse and Mozilla foundations.
At the time of our survey, these databases contained entries to July
2009. In Bugzilla, a bug is reopened if it fails regression testing or a
symptom of the bug recurs in the field. We hypothesized that a re-
opened bug might indicate a bad fix. We read the comment histories
of reopened bugs to judge whether or not the bug was reopened due
to a bad fix. Programmers sometimes even admit they committed a
bad fix: in our survey, we found statements like “Oh, I am sorry I
didn’t consider that possibility” and “Oops, missed one code path.”
Of all reopened bugs, we found that bad fixes account for 66% in
Ant, 73% in AspectJ, and 80% in Rhino. Bugs reopened because
they failed a regression test belong to the disruption dimension of



a bad fix. In our preliminary findings, reopened bugs comprise
4–7.25% of all bugs in these three projects1. We also found that
38–50% of bugs reopened due to a bad fix either had duplicates
or blocked other bugs and were therefore linked to other bugs in
Bugzilla. We found a total of 1,977 bad fixes from reopened bugs2,
and an additional 830 duplicates (i.e. bugs marked as a duplicate of
a bad fix), comprising 9% of the total bugs (31,201) in the Apache
database. Bad fixes need not manifest in reopened bugs; we focused
on reopened bugs because they often make bad fixes easier to iden-
tify. Our manual study undercounts the prevalence of bad fixes in
the studied projects, although we cannot say by how much.

In this paper, we describe the first systematic treatment of the bad
fix problem: we introduce and formalize the problem, and present
novel techniques to help developers assess the quality of a bug fix.
We deem a fix bad if it fails to cover all bug-triggering inputs or
introduces new bugs. An ideal fix covers all bug-triggering inputs
and introduces no new bugs. We define two criteria to determine
whether or not a fix resolves a bug — coverage and disruption:

Coverage: Many inputs may trigger a bug. The coverage of a fix
measures the extent to which the fix correctly handles all
bug-triggering inputs.

Disruption: A fix may unexpectedly change the behavior of the
original program. Disruption counts these deviations from
the program’s intended behavior introduced by a fix.

Given a buggy program, a bug-triggering input that results in an
assertion failure, a test-suite, and a fix, the bad fix problem is to
determine the coverage and disruption of the fix.

In theory, Dijkstra’s weakest precondition (WP) [11] can be used
to calculate the coverage of a fix. We start from the manifestation
of the bug in the buggy version of the program to discover the set
predicate of bug-triggering subset of the program’s input domain.
Then we would symbolically execute the fixed program to learn
whether, starting from that set predicate, inputs still exist that can
trigger the bug. However, Dijkstra’s WP computation depends on
loop invariants and must contend with paths exponential in the
number of branches.

We propose distance-bounded weakest precondition (WPd) to
perform the WP calculation over a set of paths near a concrete path.
Given a path and a distance budget, WPd produces a set of paths and
computes the disjunction of the WP of each path. In the context of
the bad fix problem, the bug-triggering input induces this concrete
path. This process is sound and yields an under-approximation
of the set of bug-triggering inputs. We can improve our under-
approximation by increasing the distance budget. Indeed, in the
limit when the distance budget tends to infinity, WPd is precisely
Dijkstra’s WP.

WPd offers two practical benefits. First, because we operate
directly on paths, we avoid both the loop invariant requirement and
the path-explosion problem. Second, it is our intuition that paths
closer to the bug-triggering path are more likely to be related to the
same bug and more error-prone, so adding them is likely to quickly
approximate the bug-triggering input domain at low cost. Kim et al.
showed that when a bug occurs in a file, more bugs are likely to
occur in that file, a phenomenon they name temporal locality [23].
Their results can be put another way: defects are lexically clustered,
which supports our intuition since many execution paths that are
close to each other are also lexically close.
1The absolute numbers are 377

5200 for Ant, 86
2162 for AspectJ, and 38

847
for Rhino. The number is 2939

31201 (9.4%) across all Apache projects.
2Here we restricted ourselves to bugs that had been reopened, but
not marked as duplicates.

This approach may appear circuitous: why not apply WPd directly
to the fixed program to see if we can find an input that triggers the
assertion failure? The problem is that the original buggy input no
longer triggers the bug in the fixed program. Thus, the concrete
path that triggers the bug in the buggy version of the program no
longer reaches the assertion and may not even exist in fixed program.
Computing WP based on this false path may lead to spurious or
incorrect results.

Regression testing is a measure of our disruption criterion; a
project’s test suite is a parameter of the bad fix problem to take
advantage of this fact. We combine random and regression testing
to calculate the disruption of a fix.

To demonstrate the feasibility of our approach, we implemented
a prototype, FIXATION, which automatically detects bad fixes in
Java programs. Given the buggy and fixed, versions of a program,
a test-suite, and a bug-triggering input, FIXATION solves the bad
fix problem. Our tool currently supports Java programs with condi-
tionals in Boolean and integer domains. When it detects a coverage
failure, it outputs a counterexample that triggers the bug in the fixed
program (See Section 3.3); when it detects a disruptive fix, it reports
the failing test cases or inputs (See Section 3.4). From examining the
counterexample or the failing test cases, programmer can understand
why the fix did not work and improve it.

The main contributions of this paper are:

• We introduce the bad fix problem and provide empirical ev-
idence of its importance by exploring the bug databases of
three real projects to find that bad fixes accounts for as much
as 9% of all bugs.

• We formalize the bad fix problem and propose distance-
bounded weakest precondition (WPd), a novel form of weak-
est precondition, well-suited for the bad fix problem, that
restricts the weakest precondition computation to a subset of
the paths in a program’s control flow graph.

• We implemented a prototype, called FIXATION, to check the
coverage and disruption of a fix. We evaluated our prototype
to demonstrate the feasibility of our approach: FIXATION
detects bad fixes extracted from real-world programs.

The structure of this paper is as follows. In Section 2, we illustrate
the problem with actual bad fixes and show how our technique
can detect them. Section 3 formalizes our criteria for a bad fix
and presents the detailed technique to measure them. We describe
our prototype implementation and evaluation results in Section 4.
Finally, we survey related work (Section 5) and conclude the paper
with a discussion of future work (Section 6).

2. ILLUSTRATIVE EXAMPLE
This section describes an actual sequence of bad fixes for a bug

from the Rhino project, and how our approach would have helped.
Rhino is an open-source JavaScript interpreter written in Java.

JavaScript allows programmers to define _noSuchMethod_, a special
method that the JavaScript interpreter invokes, instead of raising an
exception, when an undefined method is called on an object. The
bug, which we name NoSuchMethod, was a lack of support for this
_noSuchMethod_ mechanism. Its fix is not complicated; the final
patch was less than 100 lines. However, due to bad fixes, the bug
was reopened twice and three fixes were committed in three months.

Figure 1 contains the first committed fix. On Line 1, the pro-
grammer admits that he was not sure whether this fix covered
all relevant inputs. The fix adds an if-block which, when an
undefined method has been called, extracts noSuchMethodMethod



1 // no idea what to do if it’s a TAIL_CALL
2 if ( fun instanceof NoSuchMethodShim
3 && op != Icode_TAIL_CALL){
4
5 // get the shim and the actual method
6 NoSuchMethodShim =( NoSuchMethodShim)fun;
7 Callable noSuchMethodMethod =
8 noSuchMethodShim.noSuchMethodMethod;
9 ...

10 }

Figure 1: First fix of NoSuchMethod.

1 if ( fun instanceof NoSuchMethodShim ) {
2 if ( fun instanceof NoSuchMethodShim
3 && op != Icode_TAIL_CALL) {
4
5 // get the shim and the actual method
6 NoSuchMethodShim = (NoSuchMethodShim)fun;
7 Callable noSuchMethodMethod =
8 noSuchMethodShim.noSuchMethodMethod;
9 ...

10 if ( op == Icode_TAIL_CALL ) {
11 callParentFrame = frame.parentFrame;
12 exitFrame(cx, frame, null);
13 }
14 ...
15 }

Figure 2: Second fix of NoSuchMethod. Green, normal weight lines
indicate changes added in this fix; red, strikeout lines indicate those
removed; and gray lines are those left unchanged.

from NoSuchMethodShim and dispatches the undefined method on
it, passing the original test case. However, the clause “op !=

Icode_TAIL_CALL” could be false for an undefined method call. The
programmer missed this case. Under our criteria, this fix fails
the coverage check. Given buggy and fixed versions of the pro-
gram, FIXATION would compute the predicate of the bug-triggering
input domain and symbolically execute the fixed program with
that predicate as the initial precondition. Upon reaching the ex-
ception, FIXATION would determine the fix to be bad, and return
the counterexample “fun instanceof NoSuchMethodShim ∧ op ==

Icode_TAIL_CALL” to the programmer. In this example, FIXATION
can exploit the common idiom of asserting false at a code path
not expected to be reached; in general, however, the assertion that
captures a bug can be more complex.

After the bug was reopened, the programmer refined the fix, as
shown in Figure 2. The clause that restricted the operation mode was
dropped. Inside this if-block, the programmer added a block to deal
with the case when operation mode was set to Icode_TAIL_CALL.
The fix handles all inputs that triggered the original bug. However,
the fix failed when subjected to regression testing. It fails the dis-
ruption check of a bad fix: it excised the bug that motivated its
application at the cost of introducing new bugs.

Finally, the programmer committed a third version of the fix,
which resolved the bug and passed the regression tests. This se-
quence of fixes shows how easy it is to write a bad fix. Programmers
considering only of a subset of the bug-triggering input domain are
likely to miss conditions and execution paths. Our technique can
help programmers detect these conditions earlier and write better
fixes more quickly.

3. APPROACH
To begin, we formalize our problem domain, then define the cov-

erage and disruption of a fix. We abstract the bug b as a failure of
the assertion ϕ . Ideally, we would directly compute whether Dijk-

ib
îbĩb

B f

I

Figure 3: A program’s input domain I, the known input ib that
triggers the bug b, all inputs that trigger the bug ĩb, those inputs
the fix f handles îb, new bugs B f that f may introduce, and their
inter-relationships.

stra’s WP from ϕ in the fixed program is false. This computation
requires loop invariants and must contend with the path-explosion
problem. We have a bug-triggering input and its induced concrete
failing path. The key idea of our approach for computing whether
a fix covers all inputs that can trigger a bug is to leverage that
failing path to compute a sound under-approximation of the bug-
triggering input domain, then test the fixed program against inputs
from that domain. In Section 3.2, we introduce WPd to compute
that sound under-approximation. Section 3.3 shows how we use
that under-approximation to symbolically execute the fixed program
to calculate a counterexample to the fix. We close, in Section 3.4,
by presenting our algorithm for computing fix disruption which
combines regression and random testing.

3.1 The Bad Fix Problem
A good bug fix eliminates the bug for all inputs without introduc-

ing new bugs. We define two criteria to measure these dimensions —
coverage and disruption.

We model a program P : I → O as a function in terms of its
input/output behavior. We assume that the bug b causes an assertion
failure in the buggy program Pb and that we know a bug-triggering
input ib such that Equation 1 holds. Concretely, ib represents a
failing test case, i.e., the output Pb(ib) violates the assertion ϕ .

Pb(ib) 6|= ϕ (or equivalently, Pb(ib) |= ¬ϕ) (1)

Many inputs may trigger ¬ϕ . Definition 3.1 specifies this set.

DEFINITION 3.1 (BUG-TRIGGERING INPUT DOMAIN).

ĩb = {i ∈ I : Pb(i) |= ¬ϕ}

A bug fix f creates a new version of the program Pf . At the very
least, Pf (ib) |= ϕ , but Pf may not handle all of ĩb. Definition 3.2
defines the subset of ĩb that Pf handles.

DEFINITION 3.2 (COVERED BUG-TRIGGERING INPUTS).

îb = {i ∈ ĩb : Pf (i) |= ϕ}

Ideally, a fix f eliminates the bug b and covers all of ĩb. With
respect to ĩb, the set îb indicates the degree to which a fix achieves
this goal, viz. the first dimension of fix quality, its coverage. We use
cov( f ) to denote the coverage of a fix f .

By definition, Pf is correct, relative to b, for the inputs in îb.
Outside of ĩb, a bad fix f may introduce new bugs. Definition 3.3
captures these bugs.



DEFINITION 3.3 (INTRODUCED BUGS). Let Po be the cor-
rect oracle for P, i.e., for all inputs, Po produces the desired output.

B f = {i ∈ I \ ĩb : Pf (i) 6= Po(i)} (2)

The disruption of the fix f is the set of new deviating input values
it introduces, viz. the set B f . When f introduces no new bugs,
B f = /0 and f is not disruptive. Since we do not have a program
oracle in general, we approximate Po with the program’s test suite
T and Pb, the buggy version of the program. Section 3.4 presents
the algorithm we use to compute disruption. Along the disruption
dimension, we compare the quality of two fixes in terms of the B f
sets they induce.

An ideal fix covers all bug-triggering inputs and introduces no
disruptions:

îb = ĩb ∧ B f = /0. (3)

Figure 3 illustrates the interrelations of the sets defined in this
section. With our coverage and disruption properties in hand, we
now define the bad fix problem.

DEFINITION 3.4 (BAD FIX PROBLEM). Given a buggy pro-
gram Pb, a bug-triggering input ib, a test suite T : I→ O (modeled
as a partial function from I to O), and the fix f , determine the
coverage and disruption of f .

We can also use our criteria to partially order fixes for the same
bug. The fix fa is better than fb if and only if

cov( fb)⊆ cov( fa) ∧ B fa ⊆ B fb . (4)

3.2 Distance-Bounded Weakest Precondition
To determine whether a fix covers the bug-triggering, we intro-

duce the concept of distance-bounded weakest precondition (WPd)
which generalizes Dijkstra’s weakest precondition (WP). WPd re-
stricts the weakest precondition computation to a subset of the paths
near a distinguished path in the interprocedural control flow graph
(ICFG) of a program. In the context of the bad fix problem, the dis-
tinguished path is Πib , the concrete path induced by the known bug-
triggering input ib. In this section, we explain how WPd traverses
the ICFG of a program and uses Levenshtein edit distance [25] to
construct the subset of simple paths over which WPd computes the
weakest precondition. By considering only a subset of simple paths,
WPd mitigates the path-explosion problem and does not need loop
invariants:

WPd : Programs×Predicates×Paths×N0→ Predicates. (5)

Equation 5 defines the signature of WPd , which adds a path Π

and a distance d to the signature of standard WP. An application of
WPd(P,ϕ,Π,d) first generates the set C of candidate paths at most d
distance from Π, then computes the standard weakest precondition
over only the candidate paths in C. Equation 6 defines the candidate
paths WPd considers. The metric ∆ computes the distance of two
paths. Currently, we assign a symbol to every edge in the program’s
ICFG, map every path to a string, and use Levenshtein distance as
our metric ∆.

C = {s ∈ Paths : ∆(s,Π)≤ d} (6)

An ICFG represents loops with backedges. Thus, a concrete path
that iterates in a loop is not a simple path in an ICFG. To statically
extract paths and compute their distance, we eliminate all backedges
by infinitely unrolling all loops to form an infinitely unrolled ICFG,
denoted ICFG∞. Figure 4 shows a loop in an ICFG and its unrolled

(a) CFG with loop (b) ICFG∞

Figure 4: A CFG and its equivalent ICFG∞.

Algorithm 1 Generate paths Levenshtein distance d from Π

Input: d // distance
Input: ICFG
Input: Π

G = reverseArcs(ICFG)
Πr = reverse(Π)
result-paths← /0
q.enqueue(〈Πr[0],〈〉〉) // vertex, path
while not q.empty? do
〈v, p〉= q.dequeue()
if v = Πr[−1]∧ l(p,Πr)≤ d then

result-paths← result-paths ∪ {p}
end if
e = min(|p|−1, |Π|)
if l(p,Πr[0,e])≤ 2d then

p.append(v)
q.enqueue(〈n, p〉),∀n ∈ ηG(v))

end if
end while
return result-paths

representation in an ICFG∞. All executions have simple paths in an
ICFG∞. ICFGn, a finite subgraph of an ICFG∞, unrolls all loops n
times. All terminating programs iterate each loop a finite number
of times, and can be captured by an ICFGn. In particular, all paths
within distance d of Πib statically exist in an ICFGn for some n.

ηG : V → 2V (7)
l : Σ

∗×Σ
∗→ N0 (8)

The function ηG in Equation 7 returns the neighbors of a vertex in
the graph G, and l in Equation 8 calculates the Levenshtein distance
of two strings. Algorithm 1 uses these functions to calculate C.
For the sequence s, Algorithm 1 uses the notation s[i] to denote the
ith component of s, s[−1] to denote the last component of s, and
s[i, j], for 0 < i < j ≤ |s| to denote the substring from i to j in s.

Algorithm 1 reverses Π and the arcs in the given ICFG, before
traversing each path until it exceeds a distance budget of 2d. Paths
that reach the entry are retained only if they pass the more stringent
distance d as they can no longer become closer to Π. Algorithm 1
handles either an ICFG or an ICFG∞, but is easier to understand
when traversing an ICFG∞.

The set of candidate paths C that Algorithm 1 outputs may contain
infeasible paths, such as ones that iterate a loop once more than its
upper bound. Such paths are discarded in WPd’s second phase. Each
path in C is traversed. When a path reaches a node, a theorem-solver
attempts to satisfy its current predicate. A path whose predicate is
unsatisfiable is discarded. For example, a path that iterates a loop



beyond its upper bound generates a predicate similar to i = 4∧ i < 4.
The weakest preconditions of satisfiable paths are computed and
combined to form a disjunction:

WPd(P,ϕ,Π,d) =
∨
c∈C

WP(c,ϕ). (9)

As d increases, WPd calculates the weakest precondition of a
larger subset of the paths over which standard WP computes; in the
limit, WPd becomes WP:

lim
d→∞

WPd(P,ϕ,Π,d) = WP(P,ϕ). (10)

Under standard WP, the number of paths grows exponentially
with the number of jumps in the target program. Polymorphism
exacerbates this problem in object-oriented programs. In WPd , the
distance factor d controls the number of paths used in the weakest
precondition computation. When d = 0, WPd only computes WP
on the path Π. Varying d allows one to trade off the precision of
the computed predicate against the efficiency of its computation.
In contrast with standard WP, moreover, WPd selects paths close
to the erroneous path Πib . Thus, WPd can, in principle, find a
counterexample using fewer resources than standard WP.

Unlike WP, WPd does not need loop invariants. The difficulty of
deriving loop invariants has hampered the application of WP. Indeed,
current tools have adopted various heuristics, such as iterating a loop
1.5 times (loop condition twice, its body once), to circumvent the
lack of loop invariants [6, 13]. Under WPd , edit distance determines
candidate paths and therefore the number of the loop iterations of
each loop along the path. WPd supports context-sensitivity via
cloning; the distance budget determines whether WPd explores
a path with one more or one fewer recursive calls. Though edit
distance may construct infeasible paths, WP computation along
such a path will produce an unsatisfiable predicate which will cause
WPd to discard the path.

3.3 Detecting Violations of Coverage
With the help of WPd , the coverage of a fix f , cov( f ), can be

computed in three main steps, as shown in Equation 11:

step 3︷ ︸︸ ︷
∃x1 · · ·xn [SE(Pf ,WPd(Pb,¬ϕ,

step 1︷ ︸︸ ︷
e(Pb(ib)),d)︸ ︷︷ ︸

step 2

∧ ϕ)] (11)

1. Extract the concrete path Πib that the buggy input ib induces;

2. Compute WPd(Pb,¬ϕ,Πib ,d) = α; and

3. Symbolically execute Pf using α to derive Pf ’s postcondition
ψ , and eliminate the non-input variables xi from the clause
ψ ∧ ϕ to yield cov( f ).

In the first step, we run Pb(ib), then apply e to extract Πib . Re-
call that ϕ is the failing assertion. In the second step, α under-
approximates the set predicate of ĩb, the true bug-triggering input do-
main. In this step, we compute α for various values of d, depending
on resource constraints. The precision of our under-approximation
depends on d. Starting from the weakest precondition computed
for various d in step 2 anded with the assertion ϕ , the third step
uses symbolic execution [24] to compute the set of bug-triggering
inputs handled by the bug fix. We eliminate non-input variables,
i.e. intermediate and output variables, from the clause, as they are
irrelevant to coverage, which concerns only inputs.

Algorithm 2 Compute the disruption of a fix
Input: I // The program’s input domain
Input: pb // The buggy version of the program
Input: p f // The fixed version of the program
Input: T : I→ O // The program’s test suite
1: R = /0
2: ∀(i,o) ∈ T do // Standard regression testing
3: if p f (i) 6= o then
4: R← R∪{i}
5: end if
6: end for
7: ∀i ∈ a random subset of I do
8: if pb(i)⇒ ϕ ∧ pb(i) 6= p f (i) then
9: R← R∪{i}

10: end if
11: end for
12: return R

To decide whether f is a bad fix in terms of coverage, we check
the validity of ψ → ϕ . If it is valid, the fix does not violate the
coverage requirement. Otherwise, we deem f a bad fix and report
any counterexamples to the validity of ψ→ ϕ as new bug-triggering
inputs. Our assertion that f does not cover ĩb is sound because α

under-approximates ĩb, i.e., {i ∈ I : α} ⊆ ĩb.

3.4 Detecting Violations of Disruption
To measure the disruption of the fix f , we first run Pf on the test

suite, as is conventional, because test suites are crafted to exercise
important execution paths [16, 32]. Each test failure is a disruption.
Given a specification of a program’s input I, we then randomly
choose an input i ∈ I \ ĩb. We compare the output of Pb to Pf to find
errors not anticipated by the test suite. Each time Pb(i) 6= Pf (i), we
have found another disruption. Because îb under-approximates the
actual bug-triggering input domain ĩb, we ignore inputs that trigger
¬ϕ in Pb.

Algorithm 2 computes the disruptions of a fix, returning a set
of failing inputs. The loop at lines 7–11 samples inputs from I,
ignoring those that trigger the original bug. We use the fact that
Pb fails the assertion ϕ to discover such inputs. In comparing Pf
and Pb on those inputs, we do not assume that Pb has only the one
bug b and works correctly for all other inputs; instead, we simply
assume that we can consider each bug in isolation. Further, outside
of ĩ,b Pb usefully approximates the ideal behavior of P; when Pb
is a release, deployed version of a program, it presumably passed
regression testing.

4. EMPIRICAL EVALUATION
Our evaluation objective is two-fold: to demonstrate the feasibility

and utility of our approach, and to differentiate WPd from WP.
First, we describe our implementation, our computing environment
and how we selected our test suite. We then show that FIXATION
detects the bad fix in our motivating example, as well as five others.
We compare WPd to WP by showing how WPd accumulates path
predicates, and thus subsets of the true bug-triggering input domain
ĩb, as a function of its parameter d. Finally, we close by describing
how a developer might use FIXATION to discover bad fixes and
instead commit good ones.

4.1 Implementation
Many tools and techniques exist for detecting the disruption of

a fix, so we focused our implementation on determining fix cover-

alg:disrupt:droptildei


age. We used the WALA framework [20] to extract the concrete
buggy path induced by a bug-triggering input and build a CFG, from
which we extract candidate paths using Algorithm 1. The extracted
concrete path is the sequence of basic blocks traversed during a
particular execution of the program. ICFGn is produced by travers-
ing the CFG of each method and unrolling each loop the number
of times it iterated in the concrete path and an additional x times,
according to an unrolling parameter x; thus, n = x+ y, where y is a
loop that iterated the most times in the concrete path. The unrolling
parameter allows FIXATION to explore paths that loop more often
than the concrete path specifies. We then run our implementation of
Algorithm 1 over this ICFGn and feed each resulting path predicate
to the SMT-solver CVC3 [3], keeping only those that are satisfiable.

Java PathFinder is the Swiss army knife of Java verification [37].
FIXATION uses JPF’s Symbc component to symbolically execute
the fixed program, using the weakest precondition produced above
as the precondition. If, given this precondition, the assertion fails in
the fixed program, Symbc generates a concrete input that causes the
failure and returns it as a counterexample.

4.2 Experimental Setup
We built and ran our evaluations on a Dell XPS 630i with 2.4GHz

QuadCPU processors and 3.2 GB of Memory, running Ubuntu 8.04
with kernel Linux2.6.24-21-generic. FIXATION is built for and runs
on JRE 6.

Although we found many bad fixes in the three projects we ex-
plored, most of them were not fit for evaluation: either the bug
comments were unclear or no fix was uploaded. No convention
appears to govern the use of Bugzilla. Some programmers tend to
write detailed logs of their fix activity and upload their fix, but most
do not. We selected the first six bugs we found whose comments
proved the existence of bad fix and that had an attached fix. Five of
the bad fixes are from Rhino and MultiTask is from Ant3.

Currently, FIXATION does not directly work on the original, un-
modified code, since both WPd and Symbc (JPF v4.1) support only
Java programs consisting of statements and expressions that use only
boolean and integer variables. Thus, we first manually sliced away
all code not related to the bugs that caused the bad fixes. We then
transformed the code into an integer program that, given the same
inputs, traverses the same paths as the sliced version of the original
program. Since FIXATION simply ignores non-integer language con-
structs, like function calls and field or array accesses, we left them
in place to approximate the original program as closely as possible.
We manually transformed the conditionals in the original code into
integer conditionals. To rewrite fun instanceof NoSuchMethodCall,
we introduced the integer variable fun_int and the integer constant
NoSuchMethodCall_int, then replaced the original conditional with
the conditional fun_int == NoSuchMethodCall_int. We added logic
as necessary so that fun_int correctly tracked the type of original
object fun. At each point the bug manifested itself in the original
program, we added an assertion.

Our principal goal was to faithfully retain the inherent complexity
of the program’s logic through the transformation. Table 1 presents
evidence that we succeeded; it shows the raw lines of code, the
nodes and arcs in the ICFG, and the Cyclomatic complexity (CC)
of ICFGs before (P) and after Pi transformation. For a program
with one exit point, Cyclomatic complexity equals the number of
decision points in the program plus one [26]; we increase it in all
six cases.

4.3 Experimental Results
3 The sliced and transformed versions of the bad fixes are available
at http://wwwcsif.cs.ucdavis.edu/~gu/bugs.htm.

Name Loc Nodes Arcs CC

P Pi P Pi P Pi P Pi

NoSuchMethod 60 65 60 64 70 75 12 13
MultiTask 23 36 51 62 54 68 5 8
Substring 8 17 10 16 10 18 2 4
NativeErr 9 20 10 18 10 21 2 5
Loop 34 42 42 46 46 51 6 7
PathExp 114 133 103 119 124 147 23 30

Table 1: Bad fix CFG complexity.

1 instructionCounting ++;
2 ...
3 stackTop -= 1 + indexReg;
4 if( fun == InterpretedFun ) {
5 return processInterFun ();
6 }
7 if( fun == Continuation ) {
8 return processCon ();
9 }

10 if( fun == IdFunctionObject ) {
11 return processIdFunObj ();
12 }
13 ...
14 assert( false ); // Should never execute.

Figure 5: Sliced integer version of NoSuchMethod.

Table 2 details the results of evaluating the six examples. The
second column briefly describes each bad fix. The third column
contains the counterexample FIXATION reports. The fourth column
d presents the edit distance used to construct the candidate paths. C
denotes the number of paths FIXATION explored before determining
the fix to be bad. As a point of reference for C, Pa is the total number
of paths. Time records the time-to-completion.

Neglected Execution Paths The first four bad fixes in Ta-
ble 2 are all due to a programmer’s ignorance of potential buggy
paths. FIXATION detected the buggy paths missed by each of these
bad fixes while exploring a limited number of paths. Once it de-
tected a bad fix, FIXATION reported a counterexample to help
programmers refine their fixes. Since the bad fixes MultiTask,
Substring and NativeErr all exhibit essentially the same symp-
toms as NoSuchMethod, we describe only NoSuchMethod.

Figure 5 lists the original buggy code that required three fixes
as chronicled in Section 2. The original bug-triggering input fun
== NoSuchMethodShim && op != Icode_TAIL_CALL reminded the
programmer that there was no block for NoSuchMethodShim, so
the programmer committed the first fix in Figure 1. FIXATION
took the initial bug-triggering input and buggy code, ran with dis-
tance d set to zero, and discovered the bug-triggering input do-
main fun != InterpretedFun && fun != Continuation && fun !=

IdFunctionObject. FIXATION then symbolically executed the
first fixed program, imposing that predicate together with the set
predicate of the program’s input domain as the initial precondition4.
Given that precondition, FIXATION reached and implied an assertion
failure, then reported the fix bad and returned the counterexample
fun == NoSuchMethodShim && op == Icode_TAIL_CALL.

A Bad Fix in a Loop Standard WP needs loop invariants, which
are difficult to derive in general. Current tools usually adopt heuris-

4Without the predicate of the program’s input domain, Symbc may
generate nonsensical inputs. Assume that a program’s input domain
is x > 0∧ x < 10 and the computed weakest precondition is x > 5.
With only x > 5, Symbc could generate the illegal input x = 20.

http://wwwcsif.cs.ucdavis.edu/~gu/bugs.htm


Name Description Counterexample d C Pa Time (s)

NoSuchMethod Neglect an input. fun == NoSuchMethodShim

&& op == Icode_TAIL_CALL
0 1 30 0.664

MultiTask Forget targets’ size can be zero. type == VECTOR && size == 0 3 32 48 1.637

Substring Miss a condition. i == 1 && sT == SUB_NULL 2 3 3 0.598

NativeErr Miss handling an exception. type == NativeError 2 4 5 0.938

Loop Fail to detect bugs in loop. i_c == 6 && m_l = 3 5 354 ∞ 42.542

PathExp Miss bugs on different paths.
tG == -10000 && cT == T_PRI

&& cI == T_NULL && op == T_SHNE

&& sC == T_TRUE

27 234 1021 8.308

PathExplosion2 Miss bugs on different paths.
tG == -10000 && cT == T_PRI

&& cI == T_NULL && op == T_SHEQ &&

sC == T_FALSE && · · ·
6 237 1021 8.518

Table 2: FIXATION results.

(a) Loop (b) PathExp 1 (c) PathExp 2
Figure 6: Feasible paths as a function of edit distance.

1 private static final int M_T = 2;
2 private static final int I_L = 4;
3 ...
4 public AdapterClass createAdapterClass(
5 String adapterName , Scriptable ins[],
6 int adapterType , int i_c , int m_l) {
7 ...
8 assert( i_c <= I_L );
9 ...

10 for( int i = 0; i < i_c; i++ ) {
11 assert( i <= I_L && m_l <= M_T );
12 ...
13 }
14 ...
15 }

Figure 7: Sliced integer version of Loop.

tics at the cost of sacrificing precision [6, 13]. Here, we show how
WPd tackles the loop problem. Two bugs lurk in Figure 7 — one
outside the loop and the other inside. The initial bug-triggering input
i_c == 5 && m_l == 2 exposes only the bug outside the loop. The
first committed fix resolved only this bug. We ran FIXATION with
d = 5 on this first fix. FIXATION explored 354 candidate paths, most
of which were unsatisfiable. For example, computing WP on the
path that takes the true branch inside the for loop in its 4th iteration
generates the unsatisfiable clause i==3 && i>4. Disjuncting pred-
icates from feasible paths, FIXATION reported the bug-triggering
input domain (i_c == 5 && m_l > 2) || (i_c == 5 && m_l <= 2)

|| (i_c == 6 && m_l > 2) || (i_c == 6 && m_l <= 2). Given this

predicate as its precondition, FIXATION output the counterexample
i_c == 6 && m_l == 3.

In essence, WPd is unaware of loops. The candidate paths over
which WPd computes the weakest precondition are all simple paths,
drawn from an ICFGn. Figure 6a shows the number of feasible path
predicates WPd discovered as a function of the edit distance. It
illustrates that WPd can produce useful results when given limited
resources. Loop has infinite paths and therefore infinite feasible
paths, which we cut off at d = 14. By way of comparison, we ran
this example using ESC/Java2 and JPF Symbc, without our path
restriction. Using its default settings5, ESC/Java2 failed to report
a potential postcondition violation. Given the domain restriction
we inferred in our first phase, our backward symbolic execution
from the assertion failure, Symbc does reach the assertion failure,
but at the cost exploring all loop iterations up to the failure, as
opposed to only those iterations within d of the failing iteration;
more importantly, Symbc continued searching until it reached loop
iteration 1,000, when we killed it.

Path Explosion WPd balances scalability and coverage via
its edit distance parameter d. PathExp illustrates how FIXATION
detects potential bugs even when considering subsets of the po-
tentially feasible paths. PathExp occurred because Rhino failed to
ensure (undefined === null) evaluated to false as required by
the ECMA (JavaScript) specification. In Figure 8, six nested bugs

5ESC/Java2 does not support assertions, so we translated each as-
sertion into a postcondition annotation.



1 if ( tG == -1 ) {
2 if ( c_T == T_PRI && c_I == T_NULL ) {
3 // bug 1
4 assert( op!= T_SHEQ && op!= T_SHNE );
5 ... // assignments to op
6 // bug 2
7 assert( op!= T_SHEQ && op!= T_SHNE );
8 ...
9 }

10 } else {
11 if ( c_T == T_PRI && c_I == T_NULL ) {
12 ...
13 // bug 3
14 assert( op!= T_SHEQ && op!= T_SHNE );
15 ... // assignments to op
16 // bug 4
17 assert( op!= T_SHEQ && op!= T_SHNE );
18 ...
19 if ( op == T_EQ || op == T_SHEQ ) {
20 if ( sC== T_FALSE ) {
21 markLabel(popGOTO , popStack);
22 addByteCode(ByteCode_POP);
23 // bug 5
24 assert(op!= T_SHEQ && op!= T_SHNE);
25 }
26 ...
27 // bug 6
28 assert( op!= T_SHEQ && op!= T_SHNE );
29 }
30 }
31 }

Figure 8: Sliced integer version of PathExplosion.

are distributed in different paths. From the initial bug-triggering
input, the programmer discovered and fixed only bugs 1 and 2. We
ran FIXATION on PathExp, gradually increasing d as shown in Fig-
ure 6b. As the figure depicts, WPd finds no additional paths until
d = 27. Exploring Figure 8, we find that bugs 3–6 are all in the else

block of the first if statement, with conditional ( tG == -1 ). A path
that traverses any of bugs 3–6 shares few nodes with the original
buggy path, which traverses bugs 1 and 2. At d = 27, FIXATION
finds the new feasible predicate tG != -1 && c_T == T_PRI && c_I ==

T_NULL && op == T_SHNE && sC == T_TRUE after exploring 234 paths.
Armed with this predicate, FIXATION can symbolically execute the
first fixed program and report a counterexample exposing bugs 3
and 4.

Perhaps, as usual, the programmer was harried and rushing. In
any case, he committed a fix that corrected only bugs 1 and 2. Had
the programmer run FIXATION, he would have been aware of the
counterexample that his fix failed to handle. Figure 6c shows the
result of running FIXATION with increasing d on the partially fixed
program. At d = 5, FIXATION detects two new feasible weakest
preconditions after exploring 237 paths. These predicates generate
two counterexamples that identify the remaining two bugs. WPd
offers a flexible, principled, and resource-judicious way to search
paths near a bug-triggering path.

4.4 Threats to Validity
FIXATION’s edit distance parameter d allows its user to trade-off

performance against the completeness of FIXATION’s approximation
of the bug-triggering input domain. Determining the optimal setting
of d to obtain a better result is an interesting problem. The paths
WPd traverses depends on d as well as the structure of the CFG.
Gradually increasing d until detecting interesting paths or exceeding
a resource threshold, such as time or number of paths explored,
appears to be a good heuristic.

FIXATION is currently not optimized. Caching the predicates of
already explored paths would avoid redundant computation. Tabulat-
ing function summaries for reuse can also cache WP computations.
Adopting lightweight predicate on-the-fly feasibility checking, à la
Snugglebug [6], might remove infeasible paths at an earlier stage.

We model bugs as assertion failures. Thus, FIXATION’s applica-
bility depends on assertions being available, inferred, or written by
a programmer. In many cases, obtaining such an assertion is trivial
(as in thrown, fatal, exceptions). In others, it can be difficult and is
an external threat to the validity of our approach: an empirical study
to investigate and classify those cases would help users know when
FIXATION is and is not practical. As with any manual study, our
results may exhibit selection bias. A larger empirical study would
also help in showing the technique generalizes.

We inherit our limitation to integer programs from our symbolic
execution components. This restriction makes the values of d we
report optimistic as we operate on slightly smaller, sliced, versions
of the original program. Thus, our reliance on slicing is both a
construct and, because slicing limits the applicability and scalability
of our approach, an external, threat to validity. As the state-of-
the-art in symbolic execution improves (e.g. via techniques such
as delta-execution [10]), so will the applicability of our approach.
Nonetheless, the evaluation results are encouraging. FIXATION
detects bad fixes and reports counterexamples that can help pro-
grammers realize the limitation of particular fix. WPd has shown
itself to be a promising approach to managing the path-explosion
problem and side-stepping the loop invariant problems.

5. RELATED WORK
Our work is the first to offer a systematic methodology for assess-

ing the quality of a bug fix. It is related to the large body of work
on software testing and analysis. This section summarizes the most
closely related efforts. We divide related work into three categories:
practical computation of weakest precondition, automatic test input
generation, and studies of bug fixes and code changes.

5.1 Practical Computation of WP
Dijkstra’s weakest precondition [11] has been extended to check

the correctness of object-oriented programs. ESC/Java pioneered
its use in Java [13]. ESC/Java requires user-defined annotations to
specify the precondition, postcondition and invariants. By checking
the validity of the verification condition generated from guarded
commands, ESC/Java warns of potential bugs such as postcondition
violations or null pointer dereferences. ESC/Java’s checking is
modular so it relies on user annotation for procedure calls. To
handle loops, it heuristically iterates 1.5 times.

Snugglebug [6] presents an interprocedural WP technique. It
introduces directed call graph construction, generalization, and a
current search heuristic to improve the performance and precision.
Polymorphism means that Java programs face the dynamic-dispatch
problem when encountering function calls; directed call graph con-
struction helps find the exact callee without exhaustive search. Gen-
eralization enhances function summary reuse using tabulation. The
current search heuristic of Snugglebug prioritizes paths with less
looping or call depth.

Path-based WP computation complements WP computation over
an entire program. Applying counterexample-driven refinement,
BLAST [19] and SLAM [2] check an abstract path to see if it
corresponds to a concrete trace of the program reaching an error
state. He and Gupta proposed path-based weakest precondition to
locate and correct an erroneous statement in a function [17]. Their
path-based weakest precondition is similar to our WPd when d = 0.
We have assumed a fix at least covers the original bug-triggering



input, so single-path approaches may not handle the bad fix problem.
Our approach generalizes path-based WP by parameterizing the
distance budget d and allowing arbitrary non-zero distances.

Our WPd filters the paths over which standard WP computes.
Instead of computing WP on all paths, WPd approximates the true
bug-triggering input domain by computing WP on paths that are
close to the original buggy path. Users control the performance and
coverage of WPd through its edit distance parameter. As d increases,
WPd generates more paths and takes more time to compute. Another
insight of WPd is that computing the weakest precondition of simple
paths near a known concrete path is precise and does not rely on
heuristics: the concrete path specifies how to resolve a dynamic
dispatch target or determine how often to traverse a loop.

5.2 Automatic Test Input Generation
Automatic test input generation is an active area of research.

Dozens of techniques and tools have been proposed. For brevity, we
highlight only some of the closely related work.

CUTE [35] and DART [14] combine concrete and symbolic ex-
ecution to generate test inputs for C programs. Java PathFinder
(JPF) [37] performs generalized symbolic execution to generate
inputs for Java programs. We use Symbc from JPF [30] to generate
counterexamples. We impose preconditions to guide the symbolic
execution: Given the set predicate of an approximation of the bug-
triggering input domain as the precondition, we ask whether the
fixed program can reach the assertion failure or not. This precon-
dition restricts the search space and enhances the performance of
Symbc. If Symbc outputs a concrete input that causes the assertion
to fail, we deem the fix bad and return that input as a counterexam-
ple. Csallner et al.’s work [8] combines static checking and concrete
test-case generation. They perform random testing using the coun-
terexample predicate generated by ESC/Java. Random testing may
miss some paths. We symbolically execute all paths under imposed
precondition. Beyer et al. extend BLAST to generate testcases by
finding inputs that satisfy predicates collected from all paths in the
program [4]. We also collect predicates to generate inputs, but for a
different purpose: Beyer et al. seek to exhaustively test one program,
while we use symbolic execution on a buggy and a fixed version of
a program to evaluate fixes.

5.3 Bug Fixes and Code Changes
Research on bug fixes mainly falls into two camps: mining soft-

ware repositories and empirical study. BugMem [22] mines bug
fix history to predict potential bugs. Kim et al. predict faults by
consulting bug and fix caches they build [23]. Their work shows
that bugs exhibit locality and inspired our design of WPd . Anvik
et al. applied machine learning to find programmers who should be
responsible for the fix [1]. Weiss et al. predict fixing effort needed
for a particular bug [38] and Śliwerski et al. proposed a way to
locate code fixed using repository mining [36]. Most of the work in
this domain is probabilistic and may not be precise. We propose a
sound analysis for evaluating bug fixes: every bad fix we detect is
an actual bad fix.

Code change is fundamental to software development. Ryder
and Tip propose change impact analysis to find failure inducing
changes and thus judge the quality of change [33, 39]. We consider
a subset of the changes they consider, specifically bug fixes. Change
impact analysis applies delta debugging on a sequence of atomic
changes drawn from the comparison of two versions to locate sus-
picious changes, while we combine our distance-bounded weakest
precondition with symbolic execution to judge the quality of a fix.
Differential symbolic execution [29] seeks to precisely character-
ize the differences between two program versions. DSE exploits

abstract summaries of code that is common between two program
versions, as the effects of such code do not contribute to differences.
In contrast, FIXATION seeks to identify not only issues of disruption,
but also coverage: a subset of inputs for which both versions behave
the same, viz. by manifesting a particular bug.

McCamant and Ernst compare operational abstractions of com-
ponents and their potential replacements to predict the safety of a
component upgrade [27]. Our approach is more fine-grained: as-
sertions need not refer to the modified component as operational
abstractions must. Their focus is different from ours: they seek to
verify that a newer component will behave as expected under the
conditions its predecessor was exposed to, and we seek to verify that
a component that does indeed behave differently (due to a bug fix)
does so safely (i.e. without disruption) and completely (i.e. handling
all of ĩb).

Regression testing validates modified software to ensure changed
code has not adversely affected unchanged code [16, 28, 32, 34].
The cost of regression testing has been extensively studied and
shown that test suite size can be reduced without compromising
safety [15, 31]. Currently, we combine regression and random
testing to check the disruption of a fix.

6. CONCLUSION AND FUTURE WORK
When run on buggy and allegedly fixed versions of a program,

FIXATION reports a new bug-triggering input drawn from an under-
approximation of the true bug-triggering input domain. This new
bug-triggering input is a counterexample to the implicit assertion
that the fix is good. FIXATION can miss bad fixes if it fails to
explore a buggy path, but it is sound when it asserts that a fix is bad:
every counterexample FIXATION reports is certain to cause the fixed
program fail the assertion.

We have introduced the bad fix problem and provided empirical
evidence of its existence in real projects. We have formalized the bad
fix problem and proposed an approach that combined our distance-
bounded weakest precondition with symbolic execution to evaluate
fixes and detect bad ones. We implemented our idea in a prototype
FIXATION and evaluated it: FIXATION was able to detect bad fixes
extracted from real-world programs.

In the future, we plan to extend FIXATION to support more lan-
guage features in Java and make it applicable to real code. We intend
to implement the optimizations mentioned. Unit testing is an imme-
diate application of FIXATION. A failed testcase is an ideal original
bug-triggering input for FIXATION. Self-contained assertions in a
test suite will allow FIXATION to work directly on the code and
obviate manually constructing and inserting the assertion. The fact
that the distribution of code tested by unit testing is relatively local
is likely to be a good fit for WPd .
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