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ABSTRACT

Inspection is a highly effective but costly technique for quality
control. Most companies do not have the resources to inspect
all the code; thus accurate defect prediction can help focus
available inspection resources. BugCache is a simple, elegant,
award-winning prediction scheme that “caches” files that are
likely to contain defects [12]. In this paper, we evaluate
the utility of BugCache as a tool for focusing inspection,
we examine the assumptions underlying BugCache with the
aim of improving it, and finally we compare it with a simple,
standard bug-prediction technique. We find that BugCache is,
in fact, useful for focusing inspection effort; but surprisingly,
we find that its performance, when used for inspections, is
not much better than a naive prediction model — viz., a
model that orders files in the system by their count of closed
bugs and chooses enough files to capture 20% of the lines in
the system.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Code Inspections and Walk-Throughs

General Terms

Experimentation; Measurement; Reliability; Verification

Keywords

Empirical Software Engineering, Fault Prediction, Inspection

1. INTRODUCTION
The later a bug is discovered, the more expensive and dif-

ficult it is to resolve [1]. Deployed bugs are the worst of all,
requiring costly, embarrassing, and labor-intensive software
updates in the field and/or re-deployments. Thus stakehold-
ers, such as managers and quality assurance people, worry
most about faults that escape into released and deployed
products. Quality control methods such as inspection and
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testing aim to detect faults prior to release. Unfortunately,
code inspection and testing are costly in terms of time and
manpower, so managers seek to optimize their effectiveness.
Bug prediction has been suggested as a means to this end.
If one could predict which entities — modules, files or lines
of code — are bug-prone, quality control teams might focus
their effort on inspecting those entities.

In their award-winning paper on BugCache [12], Kim et al.
hypothesized that past knowledge of fault occurrence can
optimize testing and inspection effort. Their proposed cache-
inspired models depend on the exploitable “locality” of faults.
They hypothesized three types of locality. First, faults are
more likely to occur in recently added/changed entities (churn
locality). Second, if an entity contains a fault, then it is likely
to contain more faults (temporal locality). Finally, entities
that are logically coupled (by co-changes) with other faulty
entities are more likely to contain faults (spatial locality).
To exploit fault locality, Kim et al. uses two types of

changes, bug-introducing changes and bug-fixing changes,
along with change history, to identify a subset of entities
that are highly likely to contain defects. They implemented
two types of caches: BugCache, a theoretical model, and
FixCache, a practical prediction model. BugCache contains
faulty entities and is updated when a bug, or fault, is in-
troduced into a file. In reality, bug-introductions usually
occur unnoticed, (and hopefully discovered later!) so Bug-
Cache is a theoretical model that can’t be used until the full
project history is known. FixCache, on the other hand, is a
practical realization of BugCache that doesn’t need oracular
knowledge.
The evaluation of FixCache drew our attention: we

wanted to replicate it from a different perspective, with
an emphasis on inspection. FixCache was originally evalu-
ated using the measure of “hit rate”, which is the cumulative
percentage of the successful cache probes through a project
history. For regression testing, this measure is effective: if
FixCache accurately identifies the defect-prone files, one
can run tests only on defect-prone, modified files. However,
our concern is inspection efficiency. Kim et al. wrote:

“A manager then can use the list for quality as-
surance — for example, she can test or review
the entities in the bug cache with increased prior-
ity” [12, §6] (our italics).

Thus we evaluate FixCache from the point of view of a
stakeholder involved in code inspection — “how much effort
does FixCache actually save inspectors?”

Code inspectors would prefer to focus their effort on bug-
giest of entities in order to achieve a greatest possible payoff



of bug detection for a given investment in inspection time.
Suppose, hypothetically, that FixCache simply loaded the
largest files into the cache. In this case, a high hit rate would
not necessarily translate into an effective inspection process:
a great many lines of code might have to be inspected to find
bugs. Likewise, loading smaller files might lead to fewer hits,
but might result in efficient inspection that discovers more
bugs per unit of work.
To this end, we first evaluate FixCache, not against hit

rate (cache hits), but against defect density and the cost
effectiveness of inspection. Second, we address the questions
“What makes FixCache work?” and “Of the different cache
update policies it uses, which is most effective?” Third,
we investigate whether certain modifications to these cache
update policies would improve FixCache’s performance with
respect to the inspection cost-effectiveness. Finally, we study
whether FixCache outperforms, in terms of inspection cost
effectiveness, a very simple, standard bug prediction model.
This paper mounts a replicated study of FixCache and

makes the following contributions:

• We evaluate FixCache using defect density. We find
that, in fact, FixCache does indeed find more bug-
dense entities.

• We study how the different update and replacement
policies applicable contribute to FixCache’s bug pre-
diction and inspection efficiency, using an inspection
cost-effectiveness measure.We find that there is not
much difference in the performance of different update
and replacement policies.

• We compare FixCache with a simple prediction model,
using the same inspection measure and find that there
is not much difference.

2. THEORY
FixCache is easily described. To start, the cache is primed

with a set of files, typically the largest files. Then, the
FixCache algorithm monitors the commits to the system
and updates its cache using a set of policies. A hit occurs
when a file in the cache undergoes a bug fix; a miss occurs
when a file outside the cache receives a bug fix. The cache’s
contents, at any one point in time, contains the target set
of buggy files for testing or inspection. FixCache uses 3
update policies.

When a bug-fix is committed, FixCache immediately adds
the modified files to its cache; this is the temporal locality
policy. Next it retroactively finds and adds the file(s) from
the commit(s) in which the bug was introduced, as well as
the files that were most often committed together with these
files at that time. This is the spatial locality policy. Finally,
FixCache adds recently added/changed files to the cache.
We call this the churn locality policy. All these files are added
to the cache, if they are not already present, when a bug-fix
is observed in the anticipatory belief that they will require
fixes soon.

Kim et al. empirically evaluated FixCache using various
cache sizes (most often 10% of the entities in the system) and
found it very accurate (73%–95%) at identifying faulty files.
They also evaluated FixCache’s accuracy at method granu-
larity and found its accuracy to fall within 46%–72%. In this
paper we only evaluate FixCache at file granularity. Sev-
eral papers [7, 19, 22, 24] have reported re-implementations

of FixCache, for various applications; our implementation
achieved performance levels similar to those reported in these
earlier papers, roughly 60%–80% hit rate at file granularity,
as we discuss below.

2.1 Cost-Effectiveness
Evidently, if we could inspect just 10% of the files in a

project and find most of the project’s defects, that would
be terrific for the software industry. Unfortunately, unlike
a hardware cache that contains fixed size cache lines, Fix-
Cache contains source code entities, such as files, that can
vary greatly in size. Thus, if the files in the FixCache tend
to be large and contain a disproportionately large portion
of the project code, then focusing on the files in FixCache

may not be very helpful for code inspection. So, first, we ask
what proportion of the lines of code are actually contained
in the files that reside in the cache.

Research Question 1: What proportion of the total
lines of code are in the FixCache?

Even if the entities in FixCache include a very large pro-
portion of the lines of code in the project, they might still be
well worth inspecting, if those lines contain proportionately
more bugs (viz., higher defect density) than the lines not in
the cache. When this happens, prioritizing the cached files
increases inspection effectiveness. If, however, cached files
turn out to have lower defect density than files that are not
cached, then prioritizing files in FixCache for inspection is
unwarranted. This leads us to our next research question.

Research Question 2: Do the cached files have higher
defect density (defects per lines of code) than files not
in the cache?

Answering this question will allow us to measure the ef-
ficacy of FixCache. While this gives us a general idea of
the possible benefits of using FixCache, it does not tell us
why it actually works (if it does). A good understanding of
the mechanics of FixCache may enable us to customize or
enhance it. Thus arises the imperative to desconstruct the
various “locality-based” update policies used by FixCache,
and evaluate their merits.

2.2 What Makes FixCache Tick?
The operation of FixCache is predicated upon several

update policies. How do these update policies affect the
performance of FixCache? There are four sources of cache
updates:

1. “Initial pre-fetch”: Files added to the cache during
cache initialization (following Kim et al. [12]).

2. “Temporal locality”: Files added to the cache because
they were changed to fix bugs.

3. “Spatial locality”: Files co-changed with a buggy file,
viz., files that co-occur in many transactions where the
buggy file was changed.

4. “Churn locality”: Files that have recently been changed
or added.



Of these four, we consider the first two to reflect core
aspects of any cache, including FixCache. First, we must
initialize the cache with some files, or else the initial hit rate
would be low. Second, temporal locality adds a file to the
cache, if it is not already present, when a defect is found in
it. The other two sources, spatial locality and churn locality,
provide additional policies for including files into the cache;
it is these two policies that we evaluate empirically.

Research Question 3: How do temporal and spatial
locality policies affect FixCache performance?

With a detailed understanding of the relative influence
of different FixCache update policies, future research may
explore customizing FixCache to attain a different set of per-
formance goals. For example, while Kim et al. used the “hit
rate” measure to evaluate performance, one might, as we do,
choose other measures, such as density or cost-effectiveness,
a measure developed by Arisholm, Briand & Johannessen [3].

Research Question 4: Can we improve FixCache to
achieve better defect density?

This question raises additional interesting questions. What
is the right way to optimize cache performance? Surely it will
depend on a project’s requirements and resource availability.
Kim et al. measured FixCache performance in terms of
predictive accuracy. Is this sufficient?

2.3 Evaluating Prediction Performance
Kim et al. use the measure“hit rate”to evaluate FixCache.

“Hit rate” is the cumulative percentage of successful cache
probes at the end of a run through a project’s history. At
any point in time, the cache may contain both defective and
non-defective files. Only files that actually contain defects
score hits, so the number of defective files in the cache bears
some relation to the hit rate. FixCache considers files in
the cache to be defective and those not in the cache to be
non-defective. Consequently, the cache contains both true
positives (TP), files that actually contain defects, and false
positives (FP). The files not in the cache comprise the true
negatives (TN), non-defective files, and false negatives (FN),
defective files that are incorrectly classified. Recall measures
the ratio of retrieved to relevant files:

Recall =
TP

TP + FN
=

TP

Defective
.

No matter how many false positives are in the cache, recall
remains unaffected. In fact, we can achieve perfect recall sim-
ply by enlarging the cache to hold all files. Recall, however,
only tells half the story of a successful prediction algorithm.
We are also interested in the ratio of relevant files to those re-
trieved. If only 10% of the files are defective, then retrieving
100% of the files, which would naively yield perfect recall, is
an inefficient way to identify the defective files and demon-
strates the limitations of using recall in isolation. Thus,
recall is usually paired with another measure that penalizes
an algorithm for falsely predicting too many entities as de-
fective. Precision is the ratio of correct predictions to the
total predicted as defective

Precision =
TP

TP + FP
=

TP

InCache
.

When applied in this setting, however, both precision and
recall treat all files equally. Effectively, they are indifferent to
the number of lines of code (LOC) in the files being flagged
as defective. When using a prediction tool as a guide for
inspection, LOC is critical; smaller, buggy files may well
have higher defect density, and consequently may yield a
better return on inspection investment. When comparing
different cache update policies, or different prediction models
that select different numbers of files (and varying amounts of
code) for inspection, we adopt a cost-effectiveness measure,
specifically the area under the cost-effectiveness curve, or
aucec. Readers unfamiliar with this rather subtle measure
may wish to read Section 2.4 below, before returning here.

We apply these concepts to the evaluation of FixCache in
order to build a more complete picture of its performance in
an inspection setting. The extent to which FixCache exceeds
the performance of standard models could suggest approaches
for improving standard prediction models intended for use in
inspection; perhaps an update policy, such as spatial locality,
can be fruitfully incorporated into a traditional model. For
this reason and to asses its efficacy, we use aucec to compare
FixCache against a vanilla prediction model.
The FixCache algorithm imposes only a gross ordering

of the files to be inspected, viz., those files within the cache
are to be inspected prior to those without. The calculation
of cost effectiveness requires that we impose an order on the
files within the cache so that we do not artificially penalize
the FixCache algorithm in our evaluation.

To evaluate FixCache using aucec, we impose the same
order on the files within the cache and those not in the
cache — first by decreasing number of closed bugs, then by
increasing size. This means that the smaller files with many
closed bugs bubble up to the top.

This approach evaluates the cost-effectiveness of FixCache

fairly with our naive algorithms: we found that this ordering
provided the best performance for FixCache in every setting
when compared with other simple orderings, e.g. density, file
size, or previous defects.

Research Question 5: Does FixCache outperform
standard, simple prediction models, when used for in-
spection?

2.4 Cost-Effectiveness Curve
Here, we briefly define cost-effectiveness, then the area

under the CE curve (AUCEC), measures which we use to
investigate RQ5. If you are familiar with these measures,
please feel free to skip this section.

Suppose defects are uniformly distributed throughout the
source code. Then, if an inspection budget allows inspection
of 10% of the source code, we might choose 10% of the lines
at random and reasonably expect to find about 10% of the
defects. This scheme requires no work or expertise in data
gathering and defect modeling. It is therefore reasonable to
expect that any useful defect prediction method should be
able to improve on this result. This is the basis for the cost
effectiveness (CE) metric defined by Arisholm et al. [2] to
investigate defects in telecommunications software.

Suppose that source code is selected for inspection using a
prediction algorithm that orders code entities (e.g., files) in
terms of predicted defectiveness. If the algorithm is good and
the system has only a few defects, or well-clustered defects,
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Figure 1: Cost Effectiveness Curve. On the left, O is

the optimal, R is random, and P is a possible, practical,

predictor model. On the right, we have two different

models P1 and P2, with the same overall performance,

but P2 is better when inspecting 20% of the lines or less.

.

this procedure would allow us to inspect just a few lines of
code to find most of the defects. If the algorithm performs
poorly and/or the defects are uniformly distributed in the
code, we would expect to inspect most of the lines before we
find all the defects. The CE curve (see Figure 1, left side)
is a harsh but meticulous judge of prediction algorithms; it
plots the proportion of identified faults (a number between
0 and 1) found against the proportion of the lines of code
(also between 0 and 1) inspected. It is a way to evaluate a
proposed inspection ordering. With a random ordering (the
curve labeled R on the left side of Figure 1) and/or defects
uniformly scattered throughout the code, the CE curve is the
diagonal y = x line. At file-granularity, the optimal ordering
(labeled O in the Figure 1 left) places the smallest, most
defective files first, and the curve climbs rapidly, quickly
rising well above the y = x line. A practical algorithm has a
CE curve (labeled P in the Figure 1 left) that falls below the
optimal ordering, but remains usefully above the y = x line.
The CE curve represents a variety of operating choices:

one can choose an operating point along this curve, inspect
more or fewer lines of code and find more or fewer defects.
Thus, to jointly capture the entire set of choices afforded
by a particular prediction algorithm, one typically uses the
area under the CE curve, or aucec, which is also a number
between 0 and 1. An imaginary, utterly fantastical, prediction
algorithm will have an area very close to 1, viz., by ordering
the lines so that one can discover all the defects by inspecting
a single line; a superb algorithm will have a aucec value
close to the optimal. Values of aucec below 1/2 indicate a
poor algorithm. Thus, useful values of aucec lie between
1/2 and the optimum.

Consider two different prediction models with nearly iden-
tical aucec. On the right side of Figure 1, the two curves
labeled P1 and P2 have very similar aucec values. How-
ever, if one were inspecting 20% of the lines or less, P2
offers a better set of operating points. This line budget is
indeed quite realistic: inspecting 20% of the LOC in the
system is definitely more realistic than inspecting all of it.
Thus, the aucec, cut off at 20%, is a useful measure of
the cost-effectiveness of a prediction model; this is what we
use. Arisholm et al. [3] refer to a similar notion of aucec,
conditioned on choosing 20% of the system. As it turns out,
the preferred FixCache cache size setting of 10% of the
overall number of files in the system, typically results in a

cache that contains close to 20% of the LOC in the system.
So we adopt aucec at 20% of the LOC, which we refer to as
aucec20.

3. EXPERIMENTAL FRAMEWORK
In this section, we define some terminology and present

our experimental setup.

3.1 Revision
Source code management (SCM) systems provide a rich

version history of software projects. This history includes all
commits to every file. These commits have various attributes
such as a timestamp, authorship, change content, and commit
log message. In our study, a commit, or a revision, consists of
an author, a timestamp and a set of files changed. We chose
Git as our version control system, because of its excellent
ability to track changes and find the origin of each line of
code.

3.2 Bug-fixing Revision
Bugs are discovered and usually recorded into an issue-

tracking system such as Bugzilla and subsequently rejected
or fixed by the developers. Each bug report records its
opening date, the date of the bug fix, a free-form textual bug
description, and the final, triaged Bugzilla severity. For this
research, we consider any severity other than an enhancement

to be a bug.
Our study begins with links between Bugzilla bugs and the

specific revision that fixes the bug — we call this a bug-fixing
revision. We employed various heuristics to derive our data.
We scan for keywords, such as“bug”, “fixed”, etc., in the SCM
commit log to flag bug-fixing revisions [16]. Also, numerical
bug identifiers, mentioned in the commit log, are linked back
to the issue tracking system’s identifiers [8, 21]. Then these
identifiers are crosschecked against the issue tracking system
to see whether such an issue identifier exists and whether
its status changed after the bug-fixing commit. Finally, we
manually inspect the links to remove as many spurious links
as possible. Each remaining linked bug has a bug-fixing
revision. We gratefully acknowledge bug data we obtained
from Bachmann et al. [4].

3.3 Bug-Introducing Change
We call the lines of code that are associated with the

changes that trigger a bug fix “fix-inducing code”, following
Sliwerski et al. [20] (also see [11]), as it is the code that
needed repair. For example, if strcpy (str2,str1); were
changed to strncpy(str2,str1,n); then the original line is
considered fix-inducing code. New lines may also be added
in the bug-fixing revision, but we do not consider these
“implicated”, since they are part of the treatment, not the
symptom. Kim et al. uses the term bug-introducing change
to describe such fix-inducing code.

We use the popular Sliwerski-Zimmerman-Zeller SZZ [20]
approach to identify bug-introducing changes. We start
with data that links a bug to the revision where that bug
was fixed. If a bug fix is linked to revision n + 1, then n,
the immediately preceding revision, contains the relevant
buggy code. The diff of revision n and n + 1 of each file
changed in revision n + 1 gives us the potentially buggy
code. We call these lines the fix-inducing code. We then use
the git blame command on the fix-inducing code; git blame

produces accurate provenance annotations (author, date,



revision number where they were last changed) for each line.
With this information, we use the SZZ approach to rule out
lines that could not have been involved in the defect, because
of their time of introduction. For the rest, this approach
identifies the commit that introduced the fix-inducing line.

3.4 Defect Density
We calculate two types of defect density: defect density

based on open bugs and defect density based on closed bugs.
At time t, we identify number of closed bugs of a file up to
time t and divide that by the size of the file to calculate
closed bug density. At time t, we identify open bugs as those
reported before t and closed after t. Open bug density is the
count of open bugs divided by file size. Note we use only
the bugs that are linked to a file, since we cannot in general
identify the culpable file of an unlinked bug. By using this
density measure, we are assuming that files with higher open
bug density are more profitable to inspect.

3.5 FixCache

We faithfully re-implemented FixCache as described in [12].
Following earlier evaluation studies [19, 22, 24] of FixCache,
we implemented file-level FixCache, i.e. our implementation
aims to predict defect-prone files.
Before running FixCache, for efficiency, we first identify

all the bug-fixing revisions and chronologically order them.
For each of these bug-fixing revisions, we also use the SZZ
technique to identify the revision of the bug-introducing
change. Now we are ready to run FixCache. We “prime”
the cache with the largest files of a project during the initial
pre-fetch, then scan its history. At every bug-fix revision, we
probe the cache to see if the file being fixed is in the cache;
if so, we score a hit, otherwise, we score a miss. If a probe
results in a cache miss, we “fetch” that buggy file into the
cache, and additionally determine all the spatially related
files (files that were modified frequently with the buggy file
in question). As described by Kim et al., we go back in time
to when a bug was introduced using SZZ, and determine
spatially local files, files that were co-committed with the
buggy file being probed at that time. We limit the fetch
size of spatially local files to the block size parameter [12],
prioritized by the frequency of co-commit (more often co-
committed files get higher priority).

Regardless of cache hit or miss, we also fetch the recently
changed/added files (files that were changed/added between
two bug-fix revisions), subject to the pre-fetch size parame-
ter [12].
As new files are added into the cache, we may need to

evict old files. Following Kim et al., we used two eviction
policies — least recently used (LRU), to retain files recently
involved in a bug-fix, and closed bugs, to retain files with the
highest number of closed bugs. We did not implement the
CHANGE [12] eviction policy as Kim et al. reported that it
performs poorly.
The original FixCache presented results for 10% cache

size. Prior evaluations [19, 22, 24] of FixCache also rely on
10% cache size. To ensure the sensitivity of our analysis, we
experimented with several different cache sizes. We worked
with 6, 10, 18 and 25% cache size. For these cache sizes,
we set the block size to 2, 5, 9 and 13% respectively and
pre-fetch size to 1, 1, 2 and 3% respectively.

3.6 Snapshot
As we described earlier, after each bug-fixing revision,

we update the cached files. After updating the cache, we
determine the state of the system, in particular the cached
and uncached files. We also capture other system details such
as the cache update source, the last hit time, etc. For each
cached file, we determine its number of closed bugs, its size,
etc. We call the overall system state after each bug-fixing
revision a snapshot of the system.

4. THE DATA SETS
We chose 5 different medium to large-sized open-source

projects for our study. All have long development histories,
but are otherwise quite different. Apache Httpd is a widely
used open source web server. Gimp is a popular open source
image manipulation program. Nautilus is the default file man-
ager for the Gnome desktop. Evolution is the default email
client for the Gnome desktop with support for integrated
mail, address book and calender functionality. Lucene is the
most popular text search engine library. Except Lucene, all
of our projects are written in C. Lucene is written in Java.
We converted the Apache subversion repository to git and
used the other projects’ git repositories directly.
These systems span varied application domains: clients

and servers, GUI applications, a file browsers, and libraries
for text searching. All are of substantial size and complex-
ity. Table 1 summarizes some descriptive statistics for each
project studied. Project size ranges from 191k lines to about
800k lines. The table also presents the study period, the
number of buggy files (which represents the number of cache
probes made), the average number of source files (.c, .cpp, .h,
or .java files) in bug fixing revisions, the average lines of code
(as measured by wc -l Unix command) in bug fixing revi-
sions, the number of commits made during the study period,
the number of bug fixing commit made during this period
and the number of bug-introducing commits (commits that
introduced/changed some code that was changed/deleted
later to fix some bug).
We determine all linked bugs and their associated bug-

fixing revisions for all the subject projects. The correspond-
ing bug-fixing change is found by using diff between a bug-
fixing revision and its immediate preceding revision. After
collecting all bug-fixing changes, we use git blame on each
line of the bug-fixing change to identify its last modification
time. This gives us all of the bug-introducing changes.

5. EVALUATION
We now present our results per each research question

presented in Section 2. We only present plots from Apache
and Lucene. Data from other projects is discussed in the
text.

RQ1: What is the line coverage of FixCache?

Does FixCache achieve good hit-rates by simply caching
a disproportionate fraction of the total LOC in the system?
To check this, we plot the cached files’ total LOC count in
Figure 2 for 10% cache size and LRU based replacement
policy. The time-series line plot shows that the FixCache

caches a higher proportion of total line count when compared
to the proportion of total file count within the cache. We
found similar results for all projects. Moreover, we ran a
sensitivity analysis by choosing the cache size to be 6, 10, 18



Start End Number of Avg. Avg. Number Number Number of
Date Date Buggy Number Number of of Fix Fix Inducing

Name Files of Files of LOC Commits Commits Commits

Apache 1996-07-03 2009-04-21 610 313 191303 18456 372 1108
Gimp 1997-01-01 2009-08-08 5291 2108 784529 25583 1727 6042

Nautilus 1997-01-02 2009-08-06 1235 312 136736 13462 656 1608
Evolution 1998-01-12 2009-08-08 3980 1146 432498 30528 1363 3733
Lucene 2001-09-11 2010-06-17 2453 1181 236672 5182 683 2369

Table 1: Summary of study subjects
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Figure 2: LOC in cached files for Apache and Lucene. If

FixCache does not favor any particular size of file, then

the dashed flat-line represents the expected fraction of

total project line count in the cache for a 10% cache

size. Time-varying line is the fraction of total project

line count in the cache

and 25% of the overall files and using both LRU and Closed
Bugs replacement policy. In all cases the FixCache retained
a significantly greater (double to triple) proportion of lines,
in comparison to the proportion of the total number of files
held in the cache. This fact could undermine the efficacy of
FixCache, when used to prioritize files for inspection.

These results suggest that the performance of FixCache,
when used as an aid for targeting inspections, is not neces-
sarily as good as suggested by the original hit rate measure.
For inspection use, we need to consider file size to build a
clearer picture of FixCache performance. We do this by
comparing the defect density of cached files with that of the
un-cached files.
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RQ2a: Do the cached files have higher defect density than
files not in cache?
Figure 3 shows the boxplot of defect density in cached
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Figure 4: Defect Density in cached and un-cached

files (10% cache size, LRU replacement) for Apache and

Lucene.

and un-cached files for 10% cache size and LRU replacement
policy. Clearly, files in the FixCache have higher defect
density. We also ran an one sided paired Wilcoxon signed
rank test with a null hypothesis: defect density in cached files
is no greater than defect density in un-cached files. We found
that the FixCache does indeed contain files with greater
density (all the p-values were very small (<< 0.001)).

We also did a sensitivity analysis for different cache sizes.
We found that the above result holds for all projects, for all
cache sizes. Moreover, we found that the effect size varies
little over all cache sizes for a given project.

Figure 4 shows the time-series line plot of density in cached
and un-cached files (again for 10% cache size and LRU replace-
ment policy). This figure highlights the right-censoring [14]
effect in our data. We use bug fix information to determine
opened/closed bugs for a given sets of files. We use our (a
posteriori) knowledge of bug fixes to calculate the density of
open bugs in the code at any given point in time. As we near
the end of our data collection phase, we have fewer fixes; this
gradually reduces the number of known, open bugs to zero.
The cache, consequently, suffers from a diminishing defect
density at the end of the run, which is really an artifact of
right-censoring, not an indication that the performance of
FixCache is getting worse.
There is a noteworthy, sudden spike in FixCache defect-

density and hit rate in July, 2007 for Apache. We did a case
study to understand this event. It turned out that on July 20,
2007, 15 distinct files were linked to 7 distinct bugs, resulting
in a total of 15 ∗ 7 = 105 cache probes. This rapid succession
of defects in the same files induced a a dramatic boost in
the hit rate. Moreover, since each of these files had a large
number of opened bugs, we also observed a higher cache
defect density at that point. We observed similar (though
less pronounced) sudden hit rate spikes for other projects
as well. This suggests that FixCache may yield a higher



return in response to certain events, while performing less
well at other times.

Though files resident in FixCache have higher density,
one might argue that inspecting the entire set of files in the
cache during each bug fix commit would induce redundant in-
spection effort, since some files would be inspected repeatedly.
Rather, we could prefer to inspect files that are added or
changed (we refer to such files as churned files) since the last
inspection (the immediate prior bug fix). Thus we can ask,
how well does FixCache work if we only inspect the churned
files? This immediately raises the question of FixCache

efficacy when considering only churned files. We therefore
compare defect density of churned cached files against the
defect density of churned un-cached files.
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Figure 5: Defect Density boxplot in cached and un-

cached churned (newly added or changed) files (10%

cache size, LRU replacement) for Apache and Lucene.

RQ2b: Do the churned files in the cache have higher defect
density than churned files not in the cache?

Figure 5 shows the boxplot of the calculated defect density
of cached and un-cached churned files at 10% cache size
for the LRU replacement policy. Not only the effect size
dramatically diminished, it actually flipped for some projects,
under some parameter settings. The Evolution project shows
a lower defect density of cached files even at the typical
10% cache size. Moreover, Nautilus also shows lower defect
density of cached files at all but the 10 and 18% cache size.
Effect size is very small across the board; even so, some
projects, for some parameter settings, show a statistically
significant greater defect density for churned files.
Next, we evaluate the effect of each cache-replacement

policy on the defect density achieved in FixCache.
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Figure 6: Defect Density by loading reason in cached

and un-cached files for Apache and Lucene.

RQ3: Do different sources of cache updates have different
levels of influence on cache performance?

Figure 6 shows the defect density as contributed by differ-
ent sources of cache updates.
As is apparent from the figure, temporal locality is the

highest contributor of defect density. We disregard the initial
preloading of large files as we observe that, across all projects,
they are evicted from the cache early in the run. Wilcoxon
signed rank tests were used to check whether temporal local-
ity consistently yields greater defect density across all cache
sizes. We did find that temporal locality, for various cache
sizes, and across all projects, exhibits higher defect density
than spatial locality with only a few exceptions: Apache at 18
and 25% and Nautilus at 25% cache sizes. When compared
to churn locality, however, temporal locality may not yield
better performance.
This immediately raises a question: are temporally local

entities are competing for cache space with spatially local
or churn-local entities? In terms of defect density, can we
do better if we selectively enable/disable the other sources
of cache updates? This is a challenging question to answer
as enabling and disabling different policies will change both
the number of files and the number of lines in the cache.
Consequently, we have to take into account the total number
of lines to be inspected, as well as the open bug density. We
use the aforementioned cost effectiveness measure aucec20

to consider this question.
To use aucec20, we require a prediction model to provide

an ordering in which the files should be inspected. As speci-
fied, the FixCache algorithm provides only a gross ordering
of files, i.e., files in the cache should be inspected prior to
files not in the cache. To compare FixCache to other al-
gorithms we tried various orderings to find the one most
favorable to FixCache, but, that only used data available
to practitioners at the time of prediction. Specifically, we
order the files within the cache and those not in the cache
independently using the same ordering: order files first by
decreasing number of closed bugs, then by increasing size.
We found that this ordering provided the best performance
for FixCache in every setting. Given this ordering, we can
then pick off files from the top of the ordering until we reach
just over 20% of the overall line count in the system.
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Figure 7: aucec20 cost effectiveness after enabling/dis-

abling spatial/changed file locality (10% cache size, LRU

replacement, 20% of lines inspected) for Apache and
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means disable both; all other combinations are labeled

similarly



RQ4a: Do spatial and churn locality update policies improve
the cost-effectiveness of FixCache?
Figure 7 shows the aucec20 measure after enabling and

disabling spatial and churn locality.
In Figure 7, we use DS/ES to denote “Disable/Enable Spa-

tial locality”and DC/EC for“Disable/Enable Churn locality”.
DSDC denotes “both disabled”, while DSEC denotes “dis-
able spatial, enable churn”. This figure makes it abundantly
clear that from the perspective of aucec20 cost-effectiveness,
adding spatial and churn locality to the FixCache update
policies provides little benefit.

We want to show that there is little to no practical differ-
ence in cost effectiveness across the different locality settings.
The Kruskal-Wallis test is a non-parametric test which assess
whether n independent samples are drawn from the same
population. It is the non-parametric counterpart to a one-
way Anova[13]. This test shows that for every project, there
is no significant difference in cost-effectiveness observed when
enabling or disabling churn and/or spatial locality. Thus,
although Figure 6 suggests that churn and spatial locality
potentially have some defect density to contribute, and may
in fact cache additional files, they do not provide any ben-
efit for inspection when inspecting 20% or fewer lines, (as
per aucec20). This clearly indicates that temporal locality
(which caches files when defects are found) underlies most of
the predictive power in FixCache.
Finally, we focus on different cache replacement policies

in FixCache and compare their performance.
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Figure 8: aucec20 values for Apache and Lucene. The

left 3 are FixCache with different replacement policies,

and right most is a naive prediction model, which simply

order files by closed bug count. Only in Apache (of all)

are any of the FixCache version statistically better than

the naive model, and even then the effect size is quite

small

RQ4b: Can we improve FixCache aucec20 performance
by using a different cache replacement policy?
The original FixCache used two different policies. The

first is an LRU based replacement policy, which keeps fre-
quently hit files in the cache. The principle here is that files
that haven’t had bug fixes in a while are probably unlikely
to have latent bugs. The second was a “closed bugs” policy,
which replaced files with the least number of closed bugs
first. For our evaluation, we added a third policy based on
defect density,which replaced the file with the least density of
closed bugs. The latter two policies are based on the theory
that files with fewer bugs, or lower defect density, are likely
to have fewer latent bugs. All of these policies prima facie
appear to have merit, so it is reasonable to compare them to
see which policies yield better aucec20 performance.

The results are shown as the left most 3 boxplots in the
two plots in Figure 8

For this question, we ran FixCache with cache size set to
6%, 10%, 18% and 25% of the total file count, and consistently
obtained results with all projects similar to those seen in
Figure 8. The closed bugs policy generally showed the best
performance, while the density policy was consistently the
worst performer. This finding again, is strongly indicative
that the raw count of closed bugs in a file is an excellent
indicator of future latent bugs.

Our final question is in some sense the most critical evalu-
ation of FixCache. Does FixCache perform better than a
naive prediction model?
RQ5: When used for inspections, is FixCache doing better
than a naive model that simply picks previously buggy files?

For this question we chose a very simple, naive prediction
model: the model simply orders all the files in the system by
the number of closed bugs, and chooses enough files in order
to capture 20% of the total line count. The results are shown
as the rightmost boxplot in Figure 8.
Testing the hypothesis that the best FixCache replace-

ment policy (viz closed bugs) is better than the naive model,
we find that, after Benjamini-Hochberg correction, only the
Apache project data rejects the null hypothesis. However, as
can be seen in Figure 8, even in this case, the effect size is
fairly small.

This leads to a rather surprising, conclusion:

The naive model is actually about the same utility for
inspections, under the aucec20 measure, as the best
possible setting for FixCache.

6. THREATS TO VALIDITY
Perry et al. [18] identify three forms of validity that must

be addressed in research studies. We now examine threats
to each form of validity in our study and the methods used
to mitigate these threats where possible.
Construct validity refers to the degree to which the mea-

surements are actually related to the concepts they are be-
lieved to represent. The main threat to construct validity
come from bias in bug reporting. The bugs that are being
reported might not be representative of actual bugs encoun-
tered in the system. Linking bias is certainly extant in the
datasets, and can affect [5] the performance of FixCache,
and affect our evaluations of FixCache and the merits of dif-
ferent update policies (RQ1-4). However, it is less likely that
the result of comparing FixCache and the simple standard
prediction model (RQ5) is affected by bias.
Internal validity is the ability of a study to establish a

causal link between independent and dependent variables
regardless of what the variables are believed to represent.
Our study is focused on examining a link between variables
such as closed bugs per file, the FixCache prediction and the
actually open bugs in a file. Threats to internal validity come
from our choice of evaluation. We attempted to address this
threat by using different, specifically tailored measures for
different RQs: lines for RQ1, density for RQs 2a, 2b, and
3, and the very demanding aucec for the rest. We chose
aucec at 20% of the lines, because it closely approximates
the linecount of the files in FixCache running with a cache
size of 10%.



External validity refers to how these results generalize. Our
study includes multiple projects, belonging to different soft-
ware domains, and we find similar results among all projects
studied. However, the sample size is only five projects. While
this gives evidence of the ability of our results to generalize,
further study on more projects will increase our confidence
in these findings as answers to the research questions on a
broad level. In particular we are concerned about projects
that do not follow development processes similar to those of
the projects that we studied.

7. RELATED WORK
Kim et al. took their inspiration from Hassan et al. who

proposed the cache metaphor drawing on operating systems
research [10]. BugCache principally differs from Hassan
et al.’s “Top Ten List” in granularity: The top ten list con-
tains modules, while BugCache contains files. BugCache
performed better, even at the finer granularity. Our work
mirrors this difference; we empirically evaluate the perfor-
mance of FixCache, at line granularity, for prioritizing en-
tities for inspection. In the course of this investigation, we
compare FixCache to simple prediction models with an eye
toward improving FixCache. Thus, there are two strands of
work related to ours — FixCache evaluations and prediction
models.

FixCache Evaluations Wikrstrand et al. used FixCache
to dynamically select regression tests that run over modified,
fault-prone (in cache) files. They found that in an embedded
industrial system, the FixCache reached a weekly hit rate of
50–80% [24]. The study found that FixCache pre-population
did not affect its hit rate and observed that daily updates
quickly negate any pre-population effects. Engström et al.
follow up Wikrstrand et al.’s and evaluate the effectiveness
of Wikrstrand et al.’s algorithm at selecting regression tests.
They found the fix-cache approach to be more efficient than
its predecessor at selecting regression tests in four case stud-
ies [7]. Their work principally differs from ours in their
focus on regression testing. Sadowski et al. investigated how
FixCache’s prediction performance varies over time and how
much the set of buggy files changes [19]. They report that the
hit rate is relatively stable and that, Apache httpd, the initial
exception, stabilizes as the number of files approached the
current project size. They find that most files that remain in
the cache are correlated with a high hit rate, but that there
is room for improvement. This evaluation differs from ours
in the questions posed and our focus on cost-effectiveness,
which is line-granular.

Prediction Models A large body of research into predic-
tion models exits. Catal and Diri [6] have published a cur-
rent survey. The Predictor Models in Software Engineering
(PROMISE) series of events at ICSE are a well-known venue
in this sub-discipline. The core idea is to build a statistical
model, usually some type of linear, logistic, or count model,
with either defect-proneness (binary response) or number
of defects (count or continuous response) as the dependent
variable. Predictors are measures such as size, number of
authors [23], churn [17], social network measures [15], com-
plexity [9], and a range of other measures. A full survey of
this prolific sub-discipline would consume many pages; for
our purposes here, it is sufficient to note that we chose a
simple model as a straw-man for comparison, one that simply
ordered files by number of closed defects found in that file.

8. CONCLUSION
In this paper, we evaluated the usefulness of FixCache

as a tool for focusing code inspection effort. We found that
FixCache tends to pull larger files into the cache; however,
the bug density of files in FixCache is generally higher. We
found, in addition, that of all the update policies in Fix-

Cache, temporal locality (recently closed bugs) contributed
the most to increase bug density in the cache; indeed, when
measured in terms of the demanding cost-effectiveness mea-
sure aucec20, the other two policies, spatial and churn lo-
cality, did not contribute much. Furthermore, we compared
three different cache replacement policies, viz., based on LRU,
closed bug density, and closed bugs, and found that closed
bugs based replacement policy generally performs better in
terms of cost-effectiveness.
Perhaps most surprisingly, we found that a very simple

scheme — using the number of closed defects in a file to order
the files — provides a aucec20 performance level that is in a
statistical dead heat with the best performing configuration of
FixCache. While a priori this might seem like a discouraging
finding, it is in fact quite informative: this suggests that the
most important aspect of FixCache, if one were to use it for
inspection, is, in fact its temporal locality. Thus, the major
conclusion of our paper is this:

When used for inspection, FixCache gets most of its
power by predicting that files that recently experienced
a bug fix, do in fact contain additional, latent bugs.

Finally, we emphasize that our evaluation targeted the
utility of FixCache for inspections. While the aucec20

measures the effectiveness of FixCache or other ordering
algorithms when choosing 20% of the lines to inspect, it does
not really say much about other possible uses of FixCache,
for inspections, static analysis, formal verification, etc. We
believe these are fruitful directions for further research.
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