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Abstract

Natural languages like English are rich, complex, and pow-
erful. The highly creative and graceful use of languages like
English and Tamil, by masters like Shakespeare and Avvaiyar,
can certainly delight and inspire. But in practice, given
cognitive constraints and the exigencies of daily life, most
human utterances are far simpler and much more repetitive
and predictable. In fact, these utterances can be very use-
fully modeled using modern statistical methods. This fact
has led to the phenomenal success of statistical approaches
to speech recognition, natural language translation, question-
answering, and text mining and comprehension.

We begin with the conjecture that most software is also
natural, in the sense that it is created by humans at work,
with all the attendant constraints and limitations—and
thus, like natural language, it is also likely to be repeti-
tive and predictable. We then proceed to ask whether (a)
code can be usefully modeled by statistical language mod-
els and (b) such models can be leveraged to support soft-
ware engineers. Using the widely adopted n-gram model,
we provide empirical evidence supportive of a positive
answer to both these questions. We show that code is also
very regular, and, in fact, even more so than natural lan-
guages. As an example use of the model, we have developed
a simple code completion engine for Java that, despite its
simplicity, already improves Eclipse’s completion capabil-
ity. We conclude the paper by laying out a vision for future
research in this area.

1. INTRODUCTION

Of all that we do, communicating is the one action that is
arguably the most essentially human. Honed by millions
of years of cultural and biological evolution, language and
communication are an ordinary, instinctive part of every-
day life (see Pinker®). Although “natural” languages such
as English and Tamil accommodate exquisitely com-
plex forms of expression, everyday human communication
evolved in settings impaired by noise and impelled by need;
thus, it is most often simple, expedient, even repetitive.
This “naturalness” of quotidian human linguistic behav-
ior, together with large online corpora of utterances, mod-
ern computing resources, and statistical innovations, has
led to a revolution in natural-language processing, whose
fruits we enjoy every day in the form of speech recognition
in mobile devices and automated language translation in
the cloud, inter alia.

However, the field of natural language processing (“NLP,”
see Sparck-Jones* for a brief history) went through several
decades of rather slow and painstaking progress, beginning
with early struggles with dictionaryand grammar-based efforts
in the 1960’s. In the 1970s and 1980s, the field was reanimated
with ideas from logic and formal semantics, which still proved
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too cumbersome to perform practical tasks at scale. Both
these approaches essentially dealt with NLP from first prin-
ciples—addressing language, in all its rich theoretical glory,
rather than examining corpora of actual utterances, that is,
what people actually write or say. In the 1980s, a fundamental
shift to corpus-based, statistically rigorous methods occurred.
The availability of large, on-line corpora of natural language
text, including “aligned” text with translations in multiple
languages,® along with the computational muscle (CPU speed,
primary and secondary storage) to estimate robust statistical
models over very large data sets has led to stunning progress
and widely available practical applications, such as statistical
translation used by translate.google.com.”

Can we apply these techniques directly to software, with
its strange syntax, awash with punctuation, and replicate this
success? The funny thing about programming is that it is as
much an act of communication, from one human to another,
as it is a way to tell computers what to do. Knuth said as
much, 30 years ago:

Let us change our traditional attitude to the construction of pro-
grams: Instead of imagining that our main task is to instruct a
computer what to do, let us concentrate rather on explaining to
human beings what we want a computer to do.*

If one, then, were to view programming as an act of com-
munication, is it driven by the “language instinct”? Do we
program as we speak? Is our code largely simple, repetitive,
and predictable? Is code natural?

This, precisely, is our central hypothesis:

Programminglanguages, intheory, arecomplex, flexible and
powerful, but, “natural” programs, the ones that real people
actually write, are mostly simple and rather repetitive; thus
they have usefully predictable statistical properties that can
be captured in statistical language models and leveraged for
software engineering tasks.

We believe that repetitiveness occurs in code corpora at
lexical, syntactic, and semantic levels, both locally and glob-
ally, and we believe that this phenomenon can be captured
and exploited using modern methods of computational

* This included the Canadian Hansard (parliamentary proceedings), and
similar outputs from the European parliament.

b Indeed, a renowned pioneer of the statistical approach, Fred Jelenik, is
reputed to have exclaimed: “Every time a linguist leaves our group, the per-
formance of our speech recognition goes up!” See http://en.wikiquote.org/
wiki/Fred_Jelinek.

The original version of this paper was published in the
Proceedings of the 34th International Conference on Software
Engineering (2012), 837-847. All five authors were at UC
Davis at the time.
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data analysis. We believe this is a general, useful and practi-
cal notion that, together with the very large publicly available
corpora of open-source code, will enable a new, rigorous,
statistical approach to a wide range of applications, in program
analysis, error checking, software mining, program summa-
rization, and code searching.

This paper is the first step in what we hope will be a long
and fruitful journey. We make the following contributions:

1. We provide support for our central hypothesis by
instantiating a simple, widely used statistical language
model, using modern estimation techniques over
large software corpora;

2. We demonstrate, using standard cross-entropy and per-
plexity measures, that the above model is indeed capturing
the high-level statistical regularity that exists in software at
the n-gram level (probabilistic chains of tokens);

3. We illustrate the use of such a language model by
developing a simple code suggestion tool that already
substantially improves upon the existing suggestion
facility in the widely-used Eclipse IDE; and

4. We lay out our vision for an ambitious research agenda
that exploits large-corpus statistical models of natural
software to aid in a range of different software engi-
neering tasks.

2. MOTIVATION & BACKGROUND

There are many ways one could exploit the statistics of natu-
ral programs. We begin with a simple motivating example.
We present more ambitious possibilities later in the paper.

Consider a speech recognizer, receiving a (noisy) radio
broadcast, such as In Berlin today, Chancellor Angela <radio
buzz> announced... A good speech recognizer might guess
that the buzzed-out word was Merkel from context. Likewise,
consider an integrated development environment (IDE)
into which a programmer has typed in the partial statement:
“for (1=0;1<10.” In this context, it would be quite reason-
able for the IDE to suggest the completion “; i++) {” to the
programmer.

Why do these guesses seem so reasonable to us? In the
first case, the reason lies in the highly predictable nature of
newscasts. News reports, like many other forms of culturally
contextualized and stylized natural language expression,
tend to be well-structured and repetitive. With a reasonable
prior knowledge of this style, it is quite possible to fill in the
blanks. Thus, if we hear the world “Chancellor Angela,” we
can expect that, in most cases, the next word is “Merkel.”
This fact is well-known and exploited by speech recognizers,
natural language translation devices, and even some optical
character recognition (OCR) tools. The second example relies
on a lesser-known fact: natural programs are quite repetitive.
This fact was first observed and reported in a very large-scale
study of code by Gabel and Su,* which found that code frag-
ments of surprisingly large size tend to reoccur. Thus, if we
see the fragment for (i=0; i<10 we know what follows in
most cases. In general, if we know the most likely sequences
in a code body, we can often help programmers complete
code. Our intuition essentially amounts to the following: We

can use a code corpus to estimate the probability distribution of
code fragments. If this distribution has low-entropy, and we
can model it well: then, given a partial fragment of code
(qua partial token sequence, partial AST, or partial seman-
tic abstraction) we can often, with high confidence, guess
the rest.

What should the form of a such a distribution be, and
how should we estimate its parameters? In NLP, these distri-
butions are called “language models.” Language models in
NLP can be lexical (token sequences), syntactic (grammati-
cal structures), or semantic models (probabilistic or vector-
space representations of meaning). Markovian models of
token sequences are the simplest, and we use them as an
illustration.

2.1. Language models

A language model assigns a probability to an utterance. For
us, “utterances” are programs. More formally, consider a set
of allowable program tokens¢ 7, and the (over-generous) set
of possible program sequences 7 *; we assume the set of pos-
sible implemented systems to be S C 7 *. A language model
is a probability distribution p(.) over systems s € S, that is,

vses[0<p(s)<1] A D p(s)=1
sES

In practice, given a corpus C of programs C C S, and a suit-
ably chosen parametric distribution p(.), we attempt to cal-
culate a maximum-likelihood estimate of the parameters of
this distribution; this gives us an estimated language model.
A great many language models, based on phenomena at lexi-
cal, syntactic and semantic levels have been developed (see the
Manning and Schiitze*! book). The choice of a language model
is usually driven by practicalities: how easy s it to estimate and
how useful it is. For these reasons, the most ubiquitous is the
n-gram model, which we now use to illustrate our thesis.

Ilustration: N-gram models Consider a,a,---a,---a , the
sequence of tokens in a document (in our case, source code
for a system s). We can statistically model how likely tokens
are to follow other tokens. Thus, we can estimate the prob-
ability of a document based on the product of a series of con-
ditional probabilities:

p(s)=pla)pla,|alpla,|a a)...pala,...a, )

These n-gram models assume a Markov property, that is,
token occurrences are influenced only by a limited prefix of
length n — 1, thus for 4-gram models, we assume

p(ai | ... aH) = p(ai I a4, am)
These models are estimated from a corpus using simple
maximume-likelihood based frequency-counting of token
sequences. Thus, if “*” is a wildcard, we ask, how relatively

often are the tokens a,, a,, a, followed by a,:

count(a,a,a,a,)

p(a4 |alazas) = count(alazas*)

¢ Here we use a token to mean its lexeme.
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In practice, estimation of n-gram models is quite a bit more
complicated. The main difficulties arise from data sparsity,
that is, the richness of the model in comparison to the avail-
able data. For example, with 10* token vocabulary, a trigram
model must estimate 10'? coefficients; but even the biggest
systems only have O(10°%) tokens. Thus, some trigrams may
never occur in one corpus, but may in fact occur elsewhere.
This can cause technical difficulties; when we encounter a
previously unseen n-gram, we are, in principle, “infinitely
surprised,” because an “infinitely improbable” event x estima-
ted from the previously seen corpus to have p(x) = 0 actu-
ally occurs. Smoothing is a technique to handle cases where
we have not seen the n-grams yet and still produce usable
results with sufficient statistical rigor. Fortunately, there
exist a variety of techniques for smoothing the estimates of
avery large number of coefficients, some of which are larger
than they should be and others smaller. Sometimes it is bet-
ter to back off from a trigram model to a bigram model. The
technical details are beyond the scope of this paper, but
can be found in any advanced NLP textbook. In practice we
found that Kneser-Ney smoothing (e.g., Koehn,* Section 7)
gives good results for software corpora. However, we note
that these are very early efforts in this area, and new soft-
ware language models* *° and estimation techniques have
improved on the results presented below.

But how do we know when we have a good language
model?

2.2. What makes a good model?

Given a repetitive and highly predictable corpus of docu-
ments (or programs), a good model captures the regulari-
ties in the corpus. Thus, a good model, estimated carefully
from a representative corpus, will predict with good con-
fidence the contents of a new document drawn from the
same population. A better model can guess the contents of
the new document with higher probability. In other words,
the model will find a new document with “typical” content
not particularly surprising, or very “perplexing.” In NLP, this
idea is captured by a measure called perplexity, or its log-
transformed version, cross-entropy.! Given a document s =a,
... a,, of length n, and a language model M, we assume that
the probability of the document estimated by the model is
D,,(8). We can write down the cross-entropy measure as:

1
H,(s)= - log p(a,...a,)

and by the formulation presented in Section 2.1:

1 n
HM (S) = _;zlog Pum (ai |a1 cee iy
1

This is a measure of how “surprised” a model is by the
given document. A good model estimates higher probabilities
(closer to 1, and thus lower absolute log values) to most words
in the document. If one could manage to deploy a (hypotheti-
cal) truly superb model within an IDE to help programmers
complete code fragments, it might be able to guess, with

4 http://en.wikipedia.org/wiki/Cross_entropy; see also Ref. 31, Section 2.2,
p. 75, Equation (2.50).
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high probability, most of the program, so that most of the pro-
gramming work can be done by just hitting a tab key! In prac-
tice of course, we would probably be satisfied with a lot less.

But how good are the models that we can actually build
for “natural” software? Is software is really as “natural” (i.e.,
unsurprising) as natural language?

3. METHODOLOGY & FINDINGS

To explore these questions, we performed a series of experi-
ments with both natural language and code corpora, first
comparing the “naturalness” (using cross-entropy) of code
with English texts, and then comparing various code cor-
pora to each other to gain further insight into the similari-
ties and differences between code corpora.

Our natural language studies were based on two very
widely used corpora: the Brown corpus, and the Gutenberg
corpus.© For code, we used several sets of corpora, including
a collection of Java projects, as well a collection of applica-
tions from Ubuntu, broken up into application domains. All
are listed in Table 1.

After removing comments, the C and Java project source
code was lexically analyzed to produce token sequences
that were used to estimate n-gram language models. While

¢ We retrieved these corpora from http://www.nltk.org/.

Table 1. The 10 Java Projects, C code from 10 Ubuntu 10.10 Categories,
and 3 English Corpora we used in our study.

Tokens
Java Project Version Lines Total Unique
Ant 20110123 254457 919148 27008
Batik 20110118 367293 1384554 30298
Cassandra 20110122 135992 697498 13002
Eclipse-E4 20110426 1543206 6807301 98652
Log4dJ 20101119 68528 247001 8056
Lucene 20100319 429957 2130349 32676
Maven?2 20101118 61622 263831 7637
Maven3 20110122 114527 462397 10839
Xalan-J 20091212 349837 1085022 39383
Xerces 20110111 257572 992623 19542

Tokens
Ubuntu Domain Version Lines Total Unique
Admin 10.10 9092325 41208531 1140555
Doc 10.10 87192 362501 15373
Graphics 10.10 1422514 7453031 188792
Interpreters 10.10 1416361 6388351 201538
Mail 10.10 1049136 4408776 137324
Net 10.10 5012473 20666917 541896
Sound 10.10 1698584 29310969 436377
Tex 10.10 1405674 14342943 375845
Text 10.10 1325700 6291804 155177
Web 10.10 1743376 11361332 216474

Tokens
English Corpus Version Lines Total Unique
Brown 20101101 81851 1161192 56057
Gutenberg 20101101 55578 2621613 51156

English is the concatenation of Brown and Gutenberg. Ubuntu 10.10 Maverick was
released on 2010/10/10.




our experiments were in C and Java, extending to other
languages is trivial, and indeed subsequent work with
Python yielded similar results.

The Java projects were our central focus; we used them
both for cross-entropy studies and experiments with a lan-
guage model-based code suggestion plug-in for Eclipse.
Table 1 describes the 10 Java projects that we used. Version
indicates the date of the last revision in the Git repository
when we cloned the project. Lines is calculated using Unix
wc on all files within each repository; tokens are extracted
from each of these files. Unique Tokens refers to the number
of distinct tokens that make up the total token count given
in the Tokens field. For English, the unique token count cor-
responds to the vocabulary size; for code, this count com-
prises all the identifiers, keywords and operators.

The Ubuntu application domains were quite large in
some cases, ranging up to 9 million lines, 41 million tokens
(one million unique). The number of unique tokens is inter-
esting, as it gives a rough indication of the potential “sur-
prisingness” of the project corpus. If these unique token
were uniformly distributed throughout the project (which
would be very odd indeed), we could expect a cross-entropy
of log,(1.15E6), or approximately 20 bits. A similar calcula-
tion for the Java projects ranges from about 13 bits to about
17 bits.

3.1. Cross-entropy of code

Cross-entropy measures how surprising a test document
is to a language model estimated from a corpus. To test a
corpus against itself, one must set aside some portion of
the corpus for testing, and estimate (train) the model on
the rest of the corpus. In all our experiments, we measured
cross-entropy by averaging over a 10-fold cross-validation:
we split the corpus 90-10% (in lines) at random, trained
on the 90%, tested on 10%, and measured the average cross-
entropy. A further bit of notation: when we say we measured
the cross-entropy of X to Y, Y is the training corpus used to
estimate the parameters of the distribution model M, used
to calculate the cross-entropy, denoted HMy(X).

First, we wanted to see if there was evidence to support
the claim that software was “natural,” in the same way that
English is natural, viz., whether regularities in software
could be captured by language models.

RQ 1: Do n-gram language models capture regularities in
software?

To answer this question, we estimated n-gram models
for several values of n over both the English corpus and
the 10 Java language project corpora, using averages over
10-fold cross validation (each corpus to itself) as described
above. The results are in Figure 1. The single line above is
the average over the 10 folds for the English corpus, begin-
ning at about 10 bits for unigram models, and trailing down
to under 8 bits for 10-gram models. The average self cross-
entropy for the 10 projects are shown in boxplots, one for
each order from unigram models to 70-gram models. Several
observations can be made. First, software unigram entropy
is much lower than might be expected from a uniform dis-
tribution over unique tokens, because token frequencies are

Figure 1. Comparison of English cross-entropy versus the code cross
entropy of 10 projects.
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obviously very skewed.

Second, cross-entropy declines rapidly with n-gram order,
saturating around tri- or 4-grams. The similarity in the
decline in English and the Java projects is striking. This
decline suggests that Java corpora, like English corpora, con-
tain a good deal of locally repetitive text, and this repetition
is effectively captured by the language model. We take this to
be highly encouraging: the ability to model local repetitions
in natural languages has proven to be extremely valuable in
statistical NLP; we hope that this regularity can be exploited
for software tools (and build an NLP-based code suggestion
tool whose success supports the claim).

Last, but not least, software is far more regular than English
with entropies sinking down to under 2 bits in some cases.

Corpus-based statistical language models can capture
a high level of local regularity in software, even more so
than in English.

This raises an important question: Is the increased regu-
larity we are capturing in software merely a difference between
English and Java? Java is certainly a much simpler language
than English, with a far more structured syntax. Might not
the lower entropy be simply an artifact of the artificially
simple syntax for Java? If the statistical regularity of the local
context being captured by the language model were arising
solely from the simplicity of Java, then we should find this
uniformly across all the projects; in particular, if we train a
model on one Java project, and test on another, we should
successfully capture the local regularity in the language.
Thus, we reformulate the above question into the following:

RQ 2: Isthelocalregularitythatthe statistical language model
captures merely language-specific or is it also project-specific?

For each of the 10 projects, we train a trigram model, and
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evaluate its cross-entropy with each of the 9 others, and com-
pare the value with the average 10-fold cross-entropy against
itself. This plot is shown in Figure 2. The x-axis lists all the
different Java projects, and, for each, the boxplot shows the
range of cross-entropies with the other nine projects. The
red line at the bottom shows the average self cross-entropy
of the project against itself. As can be seen the self-entropy
is always lower.

The language models capture a significant level of
local regularity that is not an artifact of the programming
language syntax, but rather arising from “naturalness,”
or regularity, specific to each project.

This is a noteworthy result: it appears each project has its
own type of local, non-Java-specific regularity that is being
captured by the model; furthermore, the local regularity of
each project is special unto itself, and different from that of
the other projects. Most software engineers will find this
intuitive: each project has its own vocabulary, and specific
local patterns of iteration, field access, method calls, etc. It
is important to note that the models are capturing non-Java-
specific project regularity beyond simply the differences in
unigram vocabularies. In Section 4, we discuss the applica-
tion of the multi-token local regularity captured by the mod-
els to a completion task. As we demonstrate in that section,
the models are able to successfully suggest non-linguistic
tokens (tokens that are not Java keywords) about 50% of the
time; this also provides evidence that the low entropy pro-
duced by the models are not just because of Java language
simplicity.

But projects do not exist in isolation; the entire idea of
product-line engineering rests on the fact that products in
similar domains are quite similar to each other. This raises
another interesting question:

RQ 3: Do n-gram models capture similarities within and

differences between application domains?

We approached this question by studying application
domains within Ubuntu. Table 1 lists the 10 the applica-
tion domains we selected; these domains each contained
a sizeable number of projects. The domains (with num-
ber of projects in each domain) are Administration (116),
Documentation (22), Graphics (21), Interpreters (23), Mail
(15), Networking (86), Sound/Audio (26), Tex/Latex related
(135), Text processing (118), and Web (31). For each domain,
we calculated the self cross-entropy within the domains, and
the other cross-entropy, the cross-entropy of the domain
against all the others. Cross-domain entropy (median rang-
ing from 5 to 5.5 bits) is consistently and strongly higher,
abouta bitin most cases, than within-domain entropy (3-4.5
bits). Here again, as in the within-project versus between-
project case, we see that there appears to be alot of local reg-
ularity repeated within application domains, and much less
so across application domains. Some domains, for example,
the Web, appear to have much greater with-domain regular-
ity (over 2 bits lower cross-entropy); this phenomenon mer-
its further study.

Discussion We have seen that a high degree of local reg-
ularity is present in code corpora and, furthermore, that
n-gram models effectively capture these local regularities.
We find evidence suggesting that these regularities are spe-
cific to both projects and to application domains. We also
find evidence that these regularities arise not merely from
the relatively more regular (when compared to natural lan-
guages) syntax of Java, but also arise from other types of
project- and domain-specific local regularities that exist in
the code. In the next section, we demonstrate that these
project-specific regularities are useful, by using project-
specific models to extend the Eclipse suggestion engine; we
also show that the n-gram models often (about 50% of the
time) provide suggestions that are project-specific, rather
than merely suggesting Java keywords guessable from
context.

Figure 2. Ten projects cross-entropy versus self cross-entropy.
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In natural language, these local regularities have proven
to be of profound value, for tasks such as translation. It is
our belief that these regularities can be used for code sum-
marization and code searching; we also believe that deeper,
semantic properties will also often manifest themselves in
local regularities. These are discussed further in future work
section (Section 6).

4. SUGGESTING THE NEXT TOKEN

The strikingly low entropy (between 3 and 4 bits) produced
by the smoothed n-gram model indicates that, even at the
local token-sequence level, there is a high degree of “natu-
ralness.” If we make 8-16 guesses (2°-2*) as to what the next
token is, we may very well guess the right one!

Eclipse Suggestion Plug-in We built an Eclipse plug-in to
test this idea. Eclipse, like many other IDEs, has a built-in
suggestion engine that suggests a next token whenever it can.
Eclipse (and other IDEs) suggestions are typically based on
type information available in context. We conjectured that
corpus-based n-gram models suggestion engine (for brevity,
NGSE) could enhance eclipse’s built-in suggestion engine
(for brevity, ECSE) by offering tokens that tend to naturally
follow from preceding ones in the relevant corpus.

The NGSE uses a trigram model built from the corpus
of a lexed project. At every point in the code, NGSE uses the
previous two tokens, already entered into the text buffer,
and attempts to guess the next token. The language model
built from the corpus gives maximum likelihood estimates
of the probability of a specific choice of next token; this
probability can be used to rank order the likely next tokens.
Our implementation produces rank-ordered suggestions
in less than 0.2 s on average. Both NGSE and ECSE produce
many suggestions. Presenting all would be overwhelming.
Therefore we defined a heuristic to merge the lists from the
two groups: given an admissible number n of suggestions

Algorithm 1. MSE (eprops, nprops, maxrank, minlen)

Require: eprops and nprops are ordered sets of Eclipse and
N-gram proposals.

elong := { p € eprops[1..maxrank] | strlen(p)> 6}
if elong = () then

return eprops[l..maxrank]
end if

return eprops[l..(‘mxf““kﬂ o nprops[l..'_—“““*zm“kﬂ

to be presented to the user, choose n candidates from both
NGSE's and ECSE’s offers.

We observed that in general, NGSE was good at recom-
mending shorter tokens, and ECSE was better at longer
tokens (we discuss the reasons for this phenomenon later
in this section). This suggested the simple merge algorithm
MSE, defined in Algorithm 1. Whenever Eclipse offers long
tokens (we picked 7 as the break-even length, based on
observation) within the top n, we greedily pick all the top
n offers from Eclipse. Otherwise, we pick half from Eclipse
and half from our n-gram model.

The relative performance of MSE and ECSE in actual
practice might depend on a great many factors, and would

require a well-controlled, human study to be done at scale.
A suggestion engine can present more or fewer choices; it
may offer all suggestions, or only offer suggestions that are
long. Suggestions could be selected with a touch-screen,
with a mouse, or with a down-arrow key. Since our goal here
is to gauge the power of corpus-based language models, as
opposed to building the most user-friendly merged sugges-
tion engine (which remains future work) we conducted an
automated experiment, rather than a human-subject study.
We controlled for 2 factors in our experiments: the string
length of suggestions /, and the number of choices n pre-
sented to the user. We repeated the experiment varying n, for
n=2,6,10and/, for/=3,4,5,...,15. We omitted suggestions
less than 3 characters, as not useful. Also, when merging two
suggestion lists, we chose to pick at least one from each,
and thus n > 2. We felt that more than 10 choices would be
overwhelming—although our findings do not change very
much at all even with 16 and 20 choices. We choose 5 proj-
ects for study: Ant, Maven, Log4], Xalan, and Xerces. In each
project, we set aside a test set of 40 randomly chosen files
(200 set aside in all) and built a trigram language model on
the remaining files for each project. We then used the MSE
and ECSE algorithms to predict every token in the 40 set-aside
files, and evaluated how many more times the MSE made a
successful suggestion, when compared to the basic ECSE. In
each case, we evaluated the advantage of MSE over ECSE,
measured as the (percent and absolute) gain in number of
correct suggestions at each combination of factors nand [.
How does the language model help? Figure 3 presents the
results for the 6-suggestion case. The figure has two y-scales:
the left side (black circle points) is percent additional correct
suggestions, and the right side (red square points) are the
raw counts. Since the raw count of successful suggestions
from the Eclipse engine ECSE also declines with length, both
measures are useful. MSE provides measurable advantage

Figure 3. Suggestion gains from merging n-gram suggestions into
those of Eclipse.
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over ECSEfor 2, 6,aswell as 10 suggestions, and for all token
string lengths; however, the advantage in general declines
with token length. The gains up through 6-character tokens
are quite substantial, in the range of 33-67% additional sug-
gestions from the language model that are correct; between
7 and 15 characters, the gains range from 3% to 16%. When
compared to the 6 suggestions case (Figure 3), the gains are
stronger with 2 suggestions and lower for 10 suggestions.
The additional suggestions from NGSE run the gamut,
including methods, classes, and fields predictable from
frequent trigrams in the corpus (e.g., println, iterator,
IOException, append, toString, assertE-

quals, transform), package names (e.g., apache,
tools, wutil, java)as well aslanguage keywords (e.g.,
import, public, return, this).An examination of

the tokens reveals why the n-grams approach adds most value
with shorter tokens. The language model we build is based on
all the files in the system, and the most frequent n-grams are
those that occur frequently in all the files. In the corpus, we
find that coders tend to choose shorter names for entities that
are used more widely and more often; naturally these give rise
to stronger signals that are picked up by the n-gram language
model. It is worth repeating here that a significant portion,
viz., 50% of the successful suggestions are not Java keywords
guessed from language context—they are project-specific
tokens. This reinforces our claim that the statistical language
model is capturing a significant level of local regularity in the
project corpus.

In the table below, we present a different way of looking
at the benefit of MSE; the total number of keystrokes saved
by using the base ECSE, (first row) the MSE (second row)
and the percent gain from using MSE. Here, we used one
specific language model to enhance one specific software
tool, a suggestion engine. With more sophisticated tech-
niques, that model syntactic, scoping, type, and semantic
phenomena, we expect to achieve even lower entropy, and
thus better performance in this and other software tools. We
doinvite readers to download our Eclipse Suggestion Plugin,
CACHECAL" which based on a cache-enhanced locality-
sensitive n-gram model,* and improved merging heuristics.

Top 2 Top 6 Top 10
ECSE 42743 77245 95318
MSE 68798 103100 120750
Increase 61% 33% 27%

5. RELATED WORK
There are a few related areas of research, into which this line
of work could be reasonably contextualized.

Code Completion and Suggestion Completion is the task
of completing a partially typed-in token; suggestion suggests
a complete token. Section 4 concerns suggestion engines.

Modern, mature software development environments
(SDEs) provide both code completion and code sugges-
tion, often with a unified interface. Two notable open-
source Java-based examples are Eclipse and IntelliJ IDEA.

f http://macbeth.cs.ucdavis.edu/CACHECA.
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As in our work, these tools draw possible completions from
existing code, but the methods of suggestion are funda-
mentally different.

Eclipse and Intelli] IDEA respond to a programmer’s com-
pletion request (a keyboard shortcut such as ctrl+space)
by deducing what tokens “might apply” in the current syn-
tactic context. Here, the tools are primarily guided by Java
programming language semantics. For example, both
Eclipse and Intelli] IDEA respond to a completion request
by parsing available source code and creating a short list of
expected token types. If this list contains, say, a reference
type, the tools use the rules of the type system to add a list
of currently defined type-names to the list of completions.
Similarly, if a variable is expected, the tools use names visi-
ble in the symbol table. Eclipse and IDEA implement dozens
of these “syntactic and semantic rules” for various classes
of syntactic constructs. As a final step, both tools rank the
completions with a collection of apparently hand-coded
heuristics.

Our approach is complementary. Rather than using lan-
guage semantics and immediate context, to guess what
might apply, our n-gram language model captures what most
often does apply. Our approach offers a great deal more flex-
ibility and it also has the potential to be much more precise:
the space of commonly used completions is naturally far
smaller than the space of “language-allowed” completions.
Further, our approach can enhance (or order) semantically
informed suggestions and completions. It is noteworthy
that perhaps some of the strongest evidence for the “natu-
ralness” of software, though, is how well our completion
prototype functions in spite of not using semantic information.

There are approaches arguably more advanced than those
currently available in IDEs. The BMN completion algorithm
of Bruch et al.? focuses on finding the most likely method
calls likely to complete an expression by using frequency of
method calls and prior usage in similar circumstances. We
propose a broad vision for using language models of code
corpora in software tools. Our specific illustrative comple-
tion application has a broader completion goal, completing
all types of tokens, not just method calls. Later, Bruch et al.’
lay out a vision for next-generation IDEs that take advantage
of “collective wisdom” embodied in corpora and recorded
human action. We enthusiastically concur, and suggest the
use of language models from NLP to capture this wisdom.

Robbes and Lanza** compare a set of different method-
call and class-name completion strategies, which start with
a multi-letter prefix. They introduce an approach based
on history and show that it improves performance. Our
approach can complement history-based approaches by
adding a language model. Han et al."* uses Hidden Markov
Models (HMM) to infer likely tokens from abbreviations.
They make use of a dynamic programming trellis approach
for back-tracking and suggestion. Their HMM is, in fact, a
language model, but the paper does not describe how effec-
tive it is or how well it would perform for completion tasks
without user-provided abbreviations.

Jacob and Tairas'® used n-gram language models for a dif-
ferent application: to find matching code clones relevant to
partial programming task. Language models were built over



clone groups (not entire corpora as we propose) and used to
retrieve and present candidate clones relevant to a partially
completed coding task.

Hou and Pletcher'” used context-specific API information
in order to sort Eclipse code completions using static types.
Users can filter out future completion proposals.

The “Naturalness” of Names in Code A line of work has
been automatically evaluating the quality of entity names
in code, asking “Do the names reflect the meanings of the
artifacts, and if not, how could they be improved® *?” Work
by Host and @stvold'**¢ also concerns method naming: they
combine static analysis with an entropy-based measure over
the distribution of simple semantic properties of methods
in a corpus to determine which method names are most dis-
criminatory, and they use it to detect names whose usage is
inconsistent with the corpus.

Summarization and Concern Location A line of work on
code summarization® * % uses semantic properties inferred
by static analysis, rather than the “natural” regularities of soft-
ware corpora capturable in statistical models; it is complemen-
tary to ours: properties derived by static analysis (as long as they
can be done efficiently, and at scale) could be used to enrich
statistical models of large software corpora. Another line of
work seeks to locate parts of code relevant to a specified con-
cern (e.g., “place auction bid”), which could be local or cross-
cutting, based on fragments of code names,* facts mined from
code,* or co-occurrence of related words in code.*

NLP and Requirements Researchers have studied the
use of natural language in requirements engineering: “Can
we utilize natural language specifications to automatically
generate more formal specifications, or even code?”? 2643
Some of these approaches make use of NLP tools like pars-
ers and part-of-speech taggers. Our approach considers
instead the “naturalness” of code, as embodied in statisti-
cal models built from large corpora of artifacts; however
we also consider (in future work) the possibility of using
aligned (code/natural language) corpora for tasks such as
code summarization or code search, which could be viewed
as translation tasks.

Software Mining Work in this very active area® aims to
mine useful information from software repositories. Many
papers can be found in MSR conference series at ICSE, and
representative works include mining API usages,'> * pat-
terns of errors,?-?° topic extraction,?® guiding changes,*? and
several others. The approaches used vary. We argue that the
“naturalness” of software provides a conceptual perspective
for this work, and also offers some novel implementation
approaches. The conceptual perspective rests on the idea that
useful information is often manifest in software in uniform,
and uncomplicated ways; the implementation approach indi-
cates that the uniform and uncomplicated manifestation of
useful facts can be determined from a large, representative
software corpus in which the required information is already
known and annotated. This corpus can be used to estimate
the statistical relationship between the required informa-
tion and readily observable facts; this relationship can be
used to reliably find similar information in new programs
similar to the corpus. We explain this further in future work
(Sections 6.3 and 6.4).

6. FUTURE DIRECTIONS

Statistical models estimated over large code corpora hold
tremendous promise in software engineering applications.
We list some applications below.

6.1. Improved language models
In this paper, we exploited a common language model
(n-grams) that effectively captures local regularity. There are
several avenues for extension. Existing, very large bodies of
code can be readily parsed, typed, scoped, and even subject
to simple semantic analysis. All of these can be modeled
using enhanced language models to capture regularities
that exist at syntactic, type, scope, and even semantic levels.
There is a difficulty here: the richer a model, the more
data is needed to provide good estimates for the model
parameters; thus, the risk of data sparsity grows as we enrich
our models. Ideas analogous to the smoothing techniques
used in n-gram models will have to be adapted and applied
to build richer models of software corpora. In follow-on
work, researchers have exploited type models,*® syntactic
models,"** scope,* and simple data flow information,* for
various tasks. Recent work has also explored deep learning
approaches to modeling code.*® Regularities in syntax, type,
scope, and even semantic properties can be captured in
models and exploited. For example, Campbell et al.'* diag-
nose syntax error locations by exploiting the fact that lan-
guage models trained on working code will be surprised by
syntax errors. Indeed there are a great many potential appli-
cations to software engineering tasks, some of which we dis-
cuss further below.

6.2. Language models for accessibility

Some programmers have difficulty using keyboards, because
of RSI or visual impairment. Prior work explored using speech
recognition (e.g., Refs.> *18) for assistance. However, due to
fairly high recognition error rates, adoption has been lim-
ited.* None of the published approaches make use of a sta-
tistical language model trained on specific code corpora. The
use of a code-specific language model will surely reduce error
rates, as in conventional speech recognition engines. Much
development work occurs in a maintenance or re-engineering
context, where ample data is available for model estimation.
Even when only a small amount of relevant code exists, lan-
guage model adaptation,® and cacheing* could be applied.

6.3. Applications of machine translation

Consider the task of summarizing a fragment of code (or
change to code) in English. Consider also the approximate
reverse task: finding/retrieving a relevant fragment of code
(e.g., method call) given an English description. We draw an
analogy between these two problems and statistical natural
language translation (SNLT). Code and English are two lan-
guages, and essentially both the above are ¢translation tasks.
SNLT relies on access to an aligned corpus, which is a large
set of sentences simultaneously presented in two or more
languages (e.g., parliamentary proceedings, or Scriptural
verses). Consider the problem of translating a Tamil sentence
T to an English sentence E. SNLT uses a simple Bayesian
formulation to calculate the likeliest English translation; it
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maximizes the right hand size of this equation over all pos-
sible English sentences E:
p(T|E)p(E)

p(T)

For a given 7, the denominator is constant, and we just
maximize the numerator. Within the numerator, the condi-
tional distribution p(T|E) is estimated using E-T pairs in an
aligned corpus; p(E) is provided by a language model esti-
mated over an English corpus. The formulation is clearly also
applicable for the reverse translation task. The analogy to
code summarization/retrieval tasks is evident: given a code
fragment C, produce an English summary E; or, conversely,
retrieve a code fragment C given an English query E. For the
former (summarization) task, we need the conditional distri-
bution p(C|E), and a language model p(E).

First, how do we estimate the conditional distribution
p(C|E)? Several promising sources of aligned (English/
Code) corpora exist. Consider the version history of a proj-
ect. Each commit potentially offers a matched pair of a
log message (English), and some changes (Code). Second,
many in-line comments could be matched with nearby
code.”Stack-overflow posts (both questions and answers)
often include closely-related code and text. Next, con-
sider p(E): the relevant (natural language) corpora con-
cerning the code can be found in project-associated English
language text, for example, code comments, documents,
bug reports, mailing-list discussions, etc. We can thus esti-
mate p(E). These p(C|E) and p(E) models can then select
maximally likely code fragments given English descrip-
tions as shown above; the reverse task would use p(E|C)
and p(C) models, which are also analogously estimable.
This approach could use semantic properties of code, as
well; however, unlike Buse and Weimer,’ who document
the semantics of each change in isolation, we would use
statistics of semantic properties over large aligned code/
text corpora.

Porting between languages or dialects is another poten-
tial application; Nguyen and colleagues?*3%3” have exploited
the availability of cross-platform applications in Java and
C#,with method-level alignments, to train translation mod-
els, and learn API mappings. Karaivanov et al.?*® have fol-
lowed the above work in a similar vein.

p(E|T) =

6.4. Software tools
We hypothesize that the “naturalness” of software implies
a “naturalness” of deeper properties of software, such as
those normally computed by powerful but expensive soft-
ware tools; we hypothesize that (because programs tend to be
repetitive) deeper, more semantic properties of programs are
also manifest in programs in superficially similar ways. More
specifically, we hypothesize that semantic properties are usu-
ally manifest in superficial ways that are computationally
cheap to detect, particularly when compared to the cost (or
even infeasibility) of determining these properties by sound
(or complete) static analysis. If feasible, one can leverage this
notion to build simple, scalable, and effective approxima-
tions in a wide variety of settings, as we now describe.
Consider a very general formulation of a software tool
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that computes a function f over a system s, drawn from a
domain of systems S thus:

f:§ —> D

where the range D represents a fact derived by analysis, for
example, a may-alias fact, a mined rule (e.g., an API proto-
col), a error message (e.g., buffer-overflow warning), or even
a new, transformed version of the input system s € S. Let us
assume that the function f'is, in general, expensive or even
infeasible to calculate, and is thus subject to approximation
error and calculation delays in practice. We reformulate this
problem by estimating fusing an alternative formulation, f,
which chooses the most likely value of f(s), given an easily
calculated and readily observed set of evidence features e,(s),
e,(s), ... Features e(s) are “symptoms”; they are not deter-
ministic, conclusive proof that f(s) has some property ¢,
but nevertheless provide varying levels of justification for a
probabilistic beliefin ¢.

This view has a Bayesian formulation. Denote the prob-
ability that d holds of system s, given the observed bits of evi-
dence e(s):

ple(s), e, (s)...e(s)|d) p(d)
PG e e5))

The distributions on the right-hand side can be estimated
over large corpora. Given a specific system, the denominator
is a constant. For the numerator, the prior distribution p(d),
over the output domain of f, can be estimated from obser-
vations in the corpus (e.g., “How often do buffer overflow
errors occur?” “How often do different protocol patterns
occur?” etc.). In the absence of such information, a uninfor-
mative (uniform) prior could be chosen.

Next, we estimate the strength of the association (likeli-
hood) between the conclusion d and the observed features
e,(s) ... e(s) in the corpus. p(e,(s), e,s), ..., en(s)|d) can be
viewed as the conditional frequency of the observation of
features in the corpus when the output domain property d
holds. This term requires the availability of a corpus anno-
tated with property d. Even in cases where d must be manu-
ally annotated, we argue that such corpora may be well-worth
the investment (by analogy with the Penn Tree Bank®) and
can be constructed using volunteer open-source community,
and perhaps market mechanisms like the Mechanical Turk.??

Finally, assuming suitable models to enable calculation
of p(d|s) can be estimated, we write the alternative, probabi-
listic function f to choose the most likely d:

p(d|s) =

f(s) = ar%gjlaxp(db)

We hasten to add that this Bayesian formulation is just to
provide an intuition on how corpus-based statistics can be used
in a principled way to aid in the construction of approximating
software engineering tools. In practice, a machine learning for-
mulation (such as decision-trees, support-vector machines, or
even simple regression models) might prove more expedient.

Raychev et al.** demonstrated this idea, with an applica-
tion to guessing useful names of variables in obfuscated



code. Variable names are chosen by programmers to repre-
sent semantic properties; a corpus of code with clear names
can be used for training. Using very simple data-flow prop-
erties (readily derivable from syntax) as predictive features,
and a log-linear formulation of the above idea, they were
able to guess helpful variable names.

7. CONCLUSION

Although Linguists (sometimes) revel in the theoretical com-
plexities of natural languages, most “natural” utterances, in
practice, are quite regular and predictable and can in fact be
modeled by rigorous statistical methods. This fact has revo-
lutionized computational linguistics. We offer evidence sup-
porting an analogous claim for software: though software in
theory can be very complex, in practice, it appears that even a
fairly simple statistical model can capture a surprising amount
of regularity in “natural” software. This simple model is strong
enough for us to quickly and easilyimplement a fairly powerful
suggestion engine that already improves a state-of-the-art IDE.
We also lay out a vision for future work. Specifically, we believe
that natural language translation approaches can be used for
code summarization and code search in a symmetric way; we
also hypothesize that the “naturalness” of software implies a
sort of “naturalness” of deeper properties of software, such as
those normally computed by powerful, traditional software
analysis tools. These are challenging tasks, but with poten-
tially high pay-off, and we hope others will join us in this work.
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