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Abstract
Natural languages like English are rich, complex, and pow-
erful. The highly creative and graceful use of languages like 
English and Tamil, by masters like Shakespeare and Avvaiyar, 
can certainly delight and inspire. But in practice, given 
cognitive constraints and the exigencies of daily life, most 
human utterances are far simpler and much more repetitive 
and predictable. In fact, these utterances can be very use-
fully modeled using modern statistical methods. This fact 
has led to the phenomenal success of statistical approaches 
to speech recognition, natural language translation, question-
answering, and text mining and comprehension.

We begin with the conjecture that most software is also 
natural, in the sense that it is created by humans at work, 
with all the attendant constraints and limitations—and 
thus, like natural language, it is also likely to be repeti-
tive and predictable. We then proceed to ask whether (a) 
code can be usefully modeled by statistical language mod-
els and (b) such models can be leveraged to support soft-
ware engineers. Using the widely adopted n-gram model, 
we provide empirical evidence supportive of a positive 
answer to both these questions. We show that code is also 
very regular, and, in fact, even more so than natural lan-
guages. As an example use of the model, we have developed 
a simple code completion engine for Java that, despite its 
simplicity, already improves Eclipse’s completion capabil-
ity. We conclude the paper by laying out a vision for future 
research in this area.

1. INTRODUCTION
Of all that we do, communicating is the one action that is 
arguably the most essentially human. Honed by millions 
of years of cultural and biological evolution, language and  
communication are an ordinary, instinctive part of every-
day life (see Pinker39). Although “natural” languages such 
as English and Tamil accommodate exquisitely com-
plex forms of expression, everyday human communication 
evolved in settings impaired by noise and impelled by need; 
thus, it is most often simple, expedient, even repetitive. 
This “naturalness” of quotidian human linguistic behav-
ior, together with large online corpora of utterances, mod-
ern computing resources, and statistical innovations, has 
led to a revolution in natural-language processing, whose 
fruits we enjoy every day in the form of speech recognition 
in mobile devices and automated language translation in 
the cloud, inter alia.

However, the field of natural language processing (“NLP,” 
see Sparck-Jones46 for a brief history) went through several 
decades of rather slow and painstaking progress, beginning 
with early struggles with dictionary and grammar-based efforts 
in the 1960’s. In the 1970s and 1980s, the field was reanimated 
with ideas from logic and formal semantics, which still proved 

too cumbersome to perform practical tasks at scale. Both 
these approaches essentially dealt with NLP from first prin-
ciples—addressing language, in all its rich theoretical glory, 
rather than examining corpora of actual utterances, that is, 
what people actually write or say. In the 1980s, a fundamental 
shift to corpus-based, statistically rigorous methods occurred. 
The availability of large, on-line corpora of natural language 
text, including “aligned” text with translations in multiple 
languages,a along with the computational muscle (CPU speed, 
primary and secondary storage) to estimate robust statistical 
models over very large data sets has led to stunning progress 
and widely available practical applications, such as statistical 
translation used by translate.google.com.b

Can we apply these techniques directly to software, with 
its strange syntax, awash with punctuation, and replicate this 
success? The funny thing about programming is that it is as 
much an act of communication, from one human to another, 
as it is a way to tell computers what to do. Knuth said as 
much, 30 years ago:

Let us change our traditional attitude to the construction of pro-
grams: Instead of imagining that our main task is to instruct a 
computer what to do, let us concentrate rather on explaining to 
human beings what we want a computer to do.23

If one, then, were to view programming as an act of com-
munication, is it driven by the “language instinct”? Do we 
program as we speak? Is our code largely simple, repetitive, 
and predictable? Is code natural? 

This, precisely, is our central hypothesis:

We believe that repetitiveness occurs in code corpora at 
lexical, syntactic, and semantic levels, both locally and glob-
ally, and we believe that this phenomenon can be captured 
and exploited using modern methods of computational 

The original version of this paper was published in the 
Proceedings of the 34th International Conference on Software 
Engineering (2012), 837–847. All five authors were at UC 
Davis at the time.

a  This included the Canadian Hansard (parliamentary proceedings), and 
similar outputs from the European parliament.
b  Indeed, a renowned pioneer of the statistical approach, Fred Jelenik, is 
reputed to have exclaimed: “Every time a linguist leaves our group, the per-
formance of our speech recognition goes up!” See http://en.wikiquote.org/
wiki/Fred_Jelinek.

Programming languages, in theory, are complex,  flexible and 
powerful, but, “natural” programs, the ones that real people 
actually write, are mostly simple and rather repetitive; thus 
they have usefully predictable statistical properties that can 
be captured in statistical language models and leveraged for 
software engineering tasks.

http://doi.acm.org/10.1145/2902362
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can use a code corpus to estimate the probability distribution of 
code fragments. If this distribution has low-entropy, and we 
can model it well: then, given a partial fragment of code 
(qua partial token sequence, partial AST, or partial seman-
tic abstraction) we can often, with high confidence, guess 
the rest.

What should the form of a such a distribution be, and 
how should we estimate its parameters? In NLP, these distri-
butions are called “language models.” Language models in 
NLP can be lexical (token sequences), syntactic (grammati-
cal structures), or semantic models (probabilistic or vector-
space representations of meaning). Markovian models of 
token sequences are the simplest, and we use them as an 
illustration.

2.1. Language models
A language model assigns a probability to an utterance. For 
us, “utterances” are programs. More formally, consider a set 
of allowable program tokensc T , and the (over-generous) set 
of possible program sequences T *; we assume the set of pos-
sible implemented systems to be S  T *. A language model 
is a probability distribution p(.) over systems s  S, that is,

In practice, given a corpus C of programs C ⊆ S, and a suit-
ably chosen parametric distribution p(.), we attempt to cal-
culate a maximum-likelihood estimate of the parameters of 
this distribution; this gives us an estimated language model. 
A great many language models, based on phenomena at lexi-
cal, syntactic and semantic levels have been developed (see the 
Manning and Schütze31 book). The choice of a language model 
is usually driven by practicalities: how easy is it to estimate and 
how useful it is. For these reasons, the most ubiquitous is the 
n-gram model, which we now use to illustrate our thesis.

Illustration: N-gram models Consider a1 a2 . . . ai . . . an, the 
sequence of tokens in a document (in our case, source code 
for a system s). We can statistically model how likely tokens 
are to follow other tokens. Thus, we can estimate the prob-
ability of a document based on the product of a series of con-
ditional probabilities:

p(s) = p(a1)p(a2   | a1)p(a3   | a1 a2) . . . p(an|a1 . . . an-1)

These n-gram models assume a Markov property, that is, 
token occurrences are influenced only by a limited prefix of 
length n − 1, thus for 4-gram models, we assume

p(ai |a1 . . . ai-1)  p(ai   | ai-3 ai-2 ai-1)

These models are estimated from a corpus using simple 
maximum-likelihood based frequency-counting of token 
sequences. Thus, if “*” is a wildcard, we ask, how relatively 
often are the tokens a1, a2, a3 followed by a4:

data analysis. We believe this is a general, useful and practi-
cal notion that, together with the very large publicly available 
corpora of open-source code, will enable a new, rigorous, 
statistical approach to a wide range of applications, in program 
analysis, error checking, software mining, program summa-
rization, and code searching.

This paper is the first step in what we hope will be a long 
and fruitful journey. We make the following contributions:

1.  We provide support for our central hypothesis by 
instantiating a simple, widely used statistical language 
model, using modern estimation techniques over 
large software corpora;

2.  We demonstrate, using standard cross-entropy and per-
plexity measures, that the above model is indeed capturing 
the high-level statistical regularity that exists in software at 
the n-gram level (probabilistic chains of tokens);

3.  We illustrate the use of such a language model by 
developing a simple code suggestion tool that already 
substantially improves upon the existing suggestion 
facility in the widely-used Eclipse IDE; and

4.  We lay out our vision for an ambitious research agenda 
that exploits large-corpus statistical models of natural 
software to aid in a range of different software engi-
neering tasks.

2. MOTIVATION & BACKGROUND
There are many ways one could exploit the statistics of natu-
ral programs. We begin with a simple motivating example. 
We present more ambitious possibilities later in the paper.

Consider a speech recognizer, receiving a (noisy) radio 
broadcast, such as In Berlin today, Chancellor Angela <radio 
buzz> announced. . . A good speech recognizer might guess 
that the buzzed-out word was Merkel from context. Likewise, 
consider an integrated development environment (IDE) 
into which a programmer has typed in the partial statement: 
“for(i=0;i<10.” In this context, it would be quite reason-
able for the IDE to suggest the completion “;i++){” to the 
programmer.

Why do these guesses seem so reasonable to us? In the 
first case, the reason lies in the highly predictable nature of 
newscasts. News reports, like many other forms of culturally 
contextualized and stylized natural language expression, 
tend to be well-structured and repetitive. With a reasonable 
prior knowledge of this style, it is quite possible to fill in the 
blanks. Thus, if we hear the world “Chancellor Angela,” we 
can expect that, in most cases, the next word is “Merkel.” 
This fact is well-known and exploited by speech recognizers,  
natural language translation devices, and even some optical 
character recognition (OCR) tools. The second example relies 
on a lesser-known fact: natural programs are quite repetitive. 
This fact was first observed and reported in a very large-scale 
study of code by Gabel and Su,13 which found that code frag-
ments of surprisingly large size tend to reoccur. Thus, if we 
see the fragment for(i=0;i<10 we know what follows in 
most cases. In general, if we know the most likely sequences 
in a code body, we can often help programmers complete 
code. Our intuition essentially amounts to the following: We c  Here we use a token to mean its lexeme.



research highlights 

 

124    COMMUNICATIONS OF THE ACM    |   MAY 2016  |   VOL.  59  |   NO.  5

In practice, estimation of  n-gram models is quite a bit more 
complicated. The main difficulties arise from data sparsity, 
that is, the richness of the model in comparison to the avail-
able data. For example, with 104 token vocabulary, a trigram 
model must estimate 1012 coefficients; but even the biggest 
systems only have O(108) tokens. Thus, some trigrams may 
never occur in one corpus, but may in fact occur elsewhere. 
This can cause technical difficulties; when we encounter a 
previously unseen n-gram, we are, in principle, “infinitely 
surprised,” because an “infinitely improbable” event x estima
ted from the previously seen corpus to have p(x) = 0 actu-
ally occurs. Smoothing is a technique to handle cases where 
we have not seen the n-grams yet and still produce usable 
results with sufficient statistical rigor. Fortunately, there 
exist a variety of techniques for smoothing the estimates of 
a very large number of coefficients, some of which are larger 
than they should be and others smaller. Sometimes it is bet-
ter to back off from a trigram model to a bigram model. The 
technical details are beyond the scope of this paper, but 
can be found in any advanced NLP textbook. In practice we 
found that Kneser-Ney smoothing (e.g., Koehn,24 Section 7) 
gives good results for software corpora. However, we note 
that these are very early efforts in this area, and new soft-
ware language models35, 49 and estimation techniques have 
improved on the results presented below.

But how do we know when we have a good language 
model?

2.2. What makes a good model?
Given a repetitive and highly predictable corpus of docu-
ments (or programs), a good model captures the regulari-
ties in the corpus. Thus, a good model, estimated carefully 
from a representative corpus, will predict with good con-
fidence the contents of a new document drawn from the 
same population. A better model can guess the contents of 
the new document with higher probability. In other words, 
the model will find a new document with “typical” content 
not particularly surprising, or very “perplexing.” In NLP, this 
idea is captured by a measure called perplexity, or its log-
transformed version, cross-entropy.d Given a document s = a1 
. . . an, of length n, and a language model M, we assume that 
the probability of the document estimated by the model is 
pM (s). We can write down the cross-entropy measure as:

and by the formulation presented in Section 2.1:

This is a measure of how “surprised” a model is by the 
given document. A good model estimates higher probabilities 
(closer to 1, and thus lower absolute log values) to most words 
in the document. If one could manage to deploy a (hypotheti-
cal) truly superb model within an IDE to help programmers 
complete code fragments, it might be able to guess, with 

high probability, most of the program, so that most of the pro-
gramming work can be done by just hitting a tab key! In prac-
tice of course, we would probably be satisfied with a lot less.

But how good are the models that we can actually build 
for “natural” software? Is software is really as “natural” (i.e., 
unsurprising) as natural language?

3. METHODOLOGY & FINDINGS
To explore these questions, we performed a series of experi-
ments with both natural language and code corpora, first 
comparing the “naturalness” (using cross-entropy) of code 
with English texts, and then comparing various code cor-
pora to each other to gain further insight into the similari-
ties and differences between code corpora.

Our natural language studies were based on two very 
widely used corpora: the Brown corpus, and the Gutenberg 
corpus.e For code, we used several sets of corpora, including 
a collection of Java projects, as well a collection of applica-
tions from Ubuntu, broken up into application domains. All 
are listed in Table 1.

After removing comments, the C and Java project source 
code was lexically analyzed to produce token sequences 
that were used to estimate n-gram language models. While 

d  http://en.wikipedia.org/wiki/Cross_entropy; see also Ref. 31, Section 2.2, 
p. 75, Equation (2.50).

Java Project Version Lines

Tokens

Total Unique

Ant 20110123 254457 919148 27008
Batik 20110118 367293 1384554 30298
Cassandra 20110122 135992 697498 13002
Eclipse-E4 20110426 1543206 6807301 98652
Log4J 20101119 68528 247001 8056
Lucene 20100319 429957 2130349 32676
Maven2 20101118 61622 263831 7637
Maven3 20110122 114527 462397 10839
Xalan-J 20091212 349837 1085022 39383
Xerces 20110111 257572 992623 19542

Ubuntu Domain Version Lines

Tokens

Total Unique

Admin 10.10 9092325 41208531 1140555
Doc 10.10 87192 362501 15373
Graphics 10.10 1422514 7453031 188792
Interpreters 10.10 1416361 6388351 201538
Mail 10.10 1049136 4408776 137324
Net 10.10 5012473 20666917 541896
Sound 10.10 1698584 29310969 436377
Tex 10.10 1405674 14342943 375845
Text 10.10 1325700 6291804 155177
Web 10.10 1743376 11361332 216474

English Corpus Version Lines

Tokens

Total Unique

Brown 20101101 81851 1161192 56057
Gutenberg 20101101 55578 2621613 51156

English is the concatenation of Brown and Gutenberg. Ubuntu 10.10 Maverick was 
released on 2010/10/10.

Table 1. The 10 Java Projects, C code from 10 Ubuntu 10.10 Categories, 
and 3 English Corpora we used in our study.

e  We retrieved these corpora from http://www.nltk.org/.
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our experiments were in C and Java, extending to other 
languages is trivial, and indeed subsequent work with 
Python yielded similar results.

The Java projects were our central focus; we used them 
both for cross-entropy studies and experiments with a lan-
guage model-based code suggestion plug-in for Eclipse. 
Table 1 describes the 10 Java projects that we used. Version 
indicates the date of the last revision in the Git repository 
when we cloned the project. Lines is calculated using Unix 
wc on all files within each repository; tokens are extracted 
from each of these files. Unique Tokens refers to the number 
of distinct tokens that make up the total token count given 
in the Tokens field. For English, the unique token count cor-
responds to the vocabulary size; for code, this count com-
prises all the identifiers, keywords and operators.

The Ubuntu application domains were quite large in 
some cases, ranging up to 9 million lines, 41 million tokens 
(one million unique). The number of unique tokens is inter-
esting, as it gives a rough indication of the potential “sur-
prisingness” of the project corpus. If these unique token 
were uniformly distributed throughout the project (which 
would be very odd indeed), we could expect a cross-entropy 
of log2(1.15E6), or approximately 20 bits. A similar calcula-
tion for the Java projects ranges from about 13 bits to about 
17 bits.

3.1. Cross-entropy of code
Cross-entropy measures how surprising a test document 
is to a language model estimated from a corpus. To test a 
corpus against itself, one must set aside some portion of 
the corpus for testing, and estimate (train) the model on 
the rest of the corpus. In all our experiments, we measured 
cross-entropy by averaging over a 10-fold cross-validation: 
we split the corpus 90–10% (in lines) at random, trained 
on the 90%, tested on 10%, and measured the average cross-
entropy. A further bit of notation: when we say we measured 
the cross-entropy of X to Y, Y is the training corpus used to 
estimate the parameters of the distribution model MY used 
to calculate the cross-entropy, denoted HMY    (X).

First, we wanted to see if there was evidence to support 
the claim that software was “natural,” in the same way that 
English is natural, viz., whether regularities in software 
could be captured by language models.

RQ  1:  Do n-gram language models capture regularities in 
software?

To answer this question, we estimated n-gram models 
for several values of n over both the English corpus and 
the 10 Java language project corpora, using averages over 
10-fold cross validation (each corpus to itself) as described 
above. The results are in Figure 1. The single line above is 
the average over the 10 folds for the English corpus, begin-
ning at about 10 bits for unigram models, and trailing down 
to under 8 bits for 10-gram models. The average self cross-
entropy for the 10 projects are shown in boxplots, one for 
each order from unigram models to 10-gram models. Several 
observations can be made. First, software unigram entropy 
is much lower than might be expected from a uniform dis-
tribution over unique tokens, because token frequencies are 

obviously very skewed.
Second, cross-entropy declines rapidly with n-gram order, 

saturating around tri- or 4-grams. The similarity in the 
decline in English and the Java projects is striking. This 
decline suggests that Java corpora, like English corpora, con-
tain a good deal of locally repetitive text, and this repetition 
is effectively captured by the language model. We take this to 
be highly encouraging: the ability to model local repetitions 
in natural languages has proven to be extremely valuable in 
statistical NLP; we hope that this regularity can be exploited 
for software tools (and build an NLP-based code suggestion 
tool whose success supports the claim).

Last, but not least, software is far more regular than English 
with entropies sinking down to under 2 bits in some cases.

Corpus-based statistical language models can capture 
a high level of local regularity in software, even more so 
than in English.

This raises an important question: Is the increased regu-
larity we are capturing in software merely a difference between 
English and Java? Java is certainly a much simpler language 
than English, with a far more structured syntax. Might not 
the lower entropy be simply an artifact of the artificially 
simple syntax for Java? If the statistical regularity of the local 
context being captured by the language model were arising 
solely from the simplicity of Java, then we should find this 
uniformly across all the projects; in particular, if we train a 
model on one Java project, and test on another, we should 
successfully capture the local regularity in the language. 
Thus, we reformulate the above question into the following:

RQ  2:  Is the local regularity that the statistical language model 
captures merely language-specific or is it also project-specific?

For each of the 10 projects, we train a trigram model, and 

Figure 1. Comparison of English cross-entropy versus the code cross 
entropy of 10 projects.
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differences between application domains?
We approached this question by studying application 

domains within Ubuntu. Table 1 lists the 10 the applica-
tion domains we selected; these domains each contained 
a sizeable number of projects. The domains (with num-
ber of projects in each domain) are Administration (116), 
Documentation (22), Graphics (21), Interpreters (23), Mail 
(15), Networking (86), Sound/Audio (26), Tex/Latex related 
(135), Text processing (118), and Web (31). For each domain, 
we calculated the self cross-entropy within the domains, and 
the other cross-entropy, the cross-entropy of the domain 
against all the others. Cross-domain entropy (median rang-
ing from 5 to 5.5 bits) is consistently and strongly higher, 
about a bit in most cases, than within-domain entropy (3–4.5 
bits). Here again, as in the within-project versus between-
project case, we see that there appears to be a lot of local reg-
ularity repeated within application domains, and much less 
so across application domains. Some domains, for example, 
the Web, appear to have much greater with-domain regular-
ity (over 2 bits lower cross-entropy); this phenomenon mer-
its further study.

Discussion We have seen that a high degree of local reg-
ularity is present in code corpora and, furthermore, that 
n-gram models effectively capture these local regularities. 
We find evidence suggesting that these regularities are spe-
cific to both projects and to application domains. We also 
find evidence that these regularities arise not merely from 
the relatively more regular (when compared to natural lan-
guages) syntax of Java, but also arise from other types of 
project- and domain-specific local regularities that exist in 
the code. In the next section, we demonstrate that these 
project-specific regularities are useful, by using project-
specific models to extend the Eclipse suggestion engine; we 
also show that the n-gram models often (about 50% of the 
time) provide suggestions that are project-specific, rather 
than merely suggesting Java keywords guessable from 
context.

evaluate its cross-entropy with each of the 9 others, and com-
pare the value with the average 10-fold cross-entropy against 
itself. This plot is shown in Figure 2. The x-axis lists all the 
different Java projects, and, for each, the boxplot shows the 
range of cross-entropies with the other nine projects. The 
red line at the bottom shows the average self cross-entropy 
of the project against itself. As can be seen the self-entropy 
is always lower.

The language models capture a significant level of 
local regularity that is not an artifact of the programming 
language syntax, but rather arising from “naturalness,” 
or regularity, specific to each project.

This is a noteworthy result: it appears each project has its 
own type of local, non-Java-specific regularity that is being 
captured by the model; furthermore, the local regularity of 
each project is special unto itself, and different from that of 
the other projects. Most software engineers will find this 
intuitive: each project has its own vocabulary, and specific 
local patterns of iteration, field access, method calls, etc. It 
is important to note that the models are capturing non-Java-
specific project regularity beyond simply the differences in 
unigram vocabularies. In Section 4, we discuss the applica-
tion of the multi-token local regularity captured by the mod-
els to a completion task. As we demonstrate in that section, 
the models are able to successfully suggest non-linguistic 
tokens (tokens that are not Java keywords) about 50% of the 
time; this also provides evidence that the low entropy pro-
duced by the models are not just because of Java language 
simplicity.

But projects do not exist in isolation; the entire idea of 
product-line engineering rests on the fact that products in 
similar domains are quite similar to each other. This raises 
another interesting question:

RQ  3:  Do n-gram models capture similarities within and 

Figure 2. Ten projects cross-entropy versus self cross-entropy.
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require a well-controlled, human study to be done at scale. 
A suggestion engine can present more or fewer choices; it 
may offer all suggestions, or only offer suggestions that are 
long. Suggestions could be selected with a touch-screen, 
with a mouse, or with a down-arrow key. Since our goal here 
is to gauge the power of corpus-based language models, as 
opposed to building the most user-friendly merged sugges-
tion engine (which remains future work) we conducted an 
automated experiment, rather than a human-subject study.

We controlled for 2 factors in our experiments: the string 
length of suggestions l, and the number of choices n pre-
sented to the user. We repeated the experiment varying n, for 
n = 2, 6, 10 and l, for l = 3, 4, 5, . . ., 15. We omitted suggestions 
less than 3 characters, as not useful. Also, when merging two 
suggestion lists, we chose to pick at least one from each, 
and thus n ³ 2. We felt that more than 10 choices would be 
overwhelming—although our findings do not change very 
much at all even with 16 and 20 choices. We choose 5 proj-
ects for study: Ant, Maven, Log4J, Xalan, and Xerces. In each 
project, we set aside a test set of 40 randomly chosen files 
(200 set aside in all) and built a trigram language model on 
the remaining files for each project. We then used the MSE 
and ECSE algorithms to predict every token in the 40 set-aside 
files, and evaluated how many more times the MSE made a 
successful suggestion, when compared to the basic ECSE. In 
each case, we evaluated the advantage of MSE over ECSE, 
measured as the (percent and absolute) gain in number of 
correct suggestions at each combination of factors n and l.

How does the language model help? Figure 3 presents the 
results for the 6-suggestion case. The figure has two y-scales: 
the left side (black circle points) is percent additional correct 
suggestions, and the right side (red square points) are the 
raw counts. Since the raw count of successful suggestions 
from the Eclipse engine  ECSE also declines with length, both 
measures are useful. MSE provides measurable advantage 

In natural language, these local regularities have proven 
to be of profound value, for tasks such as translation. It is 
our belief that these regularities can be used for code sum-
marization and code searching; we also believe that deeper, 
semantic properties will also often manifest themselves in 
local regularities. These are discussed further in future work 
section (Section 6).

4. SUGGESTING THE NEXT TOKEN
The strikingly low entropy (between 3 and 4 bits) produced 
by the smoothed n-gram model indicates that, even at the 
local token-sequence level, there is a high degree of “natu-
ralness.” If we make 8−16 guesses (23−24) as to what the next 
token is, we may very well guess the right one!

Eclipse Suggestion Plug-in We built an Eclipse plug-in to 
test this idea. Eclipse, like many other IDEs, has a built-in 
suggestion engine that suggests a next token whenever it can. 
Eclipse (and other IDEs) suggestions are typically based on 
type information available in context. We conjectured that 
corpus-based n-gram models suggestion engine (for brevity, 
NGSE  ) could enhance eclipse’s built-in suggestion engine 
(for brevity, ECSE  ) by offering tokens that tend to naturally 
follow from preceding ones in the relevant corpus.

The NGSE uses a trigram model built from the corpus  
of a lexed project. At every point in the code, NGSE uses the 
previous two tokens, already entered into the text buffer, 
and attempts to guess the next token. The language model 
built from the corpus gives maximum likelihood estimates 
of the probability of a specific choice of next token; this 
probability can be used to rank order the likely next tokens. 
Our implementation produces rank-ordered suggestions 
in less than 0.2 s on average. Both NGSE and ECSE produce 
many suggestions. Presenting all would be overwhelming. 
Therefore we defined a heuristic to merge the lists from the 
two groups: given an admissible number n of suggestions 

to be presented to the user, choose n candidates from both 
NGSE’s and ECSE’s offers.

We observed that in general, NGSE was good at recom-
mending shorter tokens, and ECSE was better at longer 
tokens (we discuss the reasons for this phenomenon later 
in this section). This suggested the simple merge algorithm 
MSE, defined in Algorithm 1. Whenever Eclipse offers long 
tokens (we picked 7 as the break-even length, based on 
observation) within the top n, we greedily pick all the top 
n offers from Eclipse. Otherwise, we pick half from Eclipse 
and half from our n-gram model.

The relative performance of MSE and ECSE in actual 
practice might depend on a great many factors, and would 
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Figure 3. Suggestion gains from merging n-gram suggestions into 
those of Eclipse.

Algorithm 1. MSE (eprops, nprops, maxrank, minlen)

Require: eprops and nprops are ordered sets of Eclipse and 
N-gram proposals.

elong := { p ∈ eprops[1..maxrank] | strlen( p) > 6}
if elong ≠ 0/  then

  return  eprops[1..maxrank]
end if
return 
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over  ECSE for 2, 6, as well as 10 suggestions, and for all token 
string lengths; however, the advantage in general declines 
with token length. The gains up through 6-character tokens 
are quite substantial, in the range of 33–67% additional sug-
gestions from the language model that are correct; between 
7 and 15 characters, the gains range from 3% to 16%. When 
compared to the 6 suggestions case (Figure 3), the gains are 
stronger with 2 suggestions and lower for 10 suggestions.

The additional suggestions from NGSE run the gamut, 
including methods, classes, and fields predictable from 
frequent trigrams in the corpus (e.g.,  println, iterator, 
IOException, append, toString, assertE-
quals, transform), package names (e.g., apache, 
tools, util, java) as well as language keywords (e.g., 
import, public, return, this). An examination of 
the tokens reveals why the n-grams approach adds most value 
with shorter tokens. The language model we build is based on 
all the files in the system, and the most frequent n-grams are 
those that occur frequently in all the files. In the corpus, we 
find that coders tend to choose shorter names for entities that 
are used more widely and more often; naturally these give rise 
to stronger signals that are picked up by the n-gram language 
model. It is worth repeating here that a significant portion, 
viz., 50% of the successful suggestions are not Java keywords 
guessed from language context—they are project-specific 
tokens. This reinforces our claim that the statistical language 
model is capturing a significant level of local regularity in the 
project corpus.

In the table below, we present a different way of looking 
at the benefit of MSE; the total number of keystrokes saved 
by using the base ECSE, (first row) the MSE (second row) 
and the percent gain from using MSE. Here, we used one 
specific language model to enhance one specific software 
tool, a suggestion engine. With more sophisticated tech-
niques, that model syntactic, scoping, type, and semantic 
phenomena, we expect to achieve even lower entropy, and 
thus better performance in this and other software tools. We 
do invite readers to download our Eclipse Suggestion Plugin, 
CACHECAf,11 which based on a cache-enhanced locality-
sensitive n-gram model,49 and improved merging heuristics.

 Top 2 Top 6 Top 10

ECSE 42743   77245   95318
MSE 68798 103100 120750
Increase 61% 33% 27%

5. RELATED WORK
There are a few related areas of research, into which this line 
of work could be reasonably contextualized.

Code Completion and Suggestion Completion is the task 
of completing a partially typed-in token; suggestion suggests 
a complete token. Section 4 concerns suggestion engines.

Modern, mature software development environments 
(SDEs) provide both code completion and code sugges-
tion, often with a unified interface. Two notable open-
source Java-based examples are Eclipse and IntelliJ IDEA. 

As in our work, these tools draw possible completions from 
existing code, but the methods of suggestion are funda-
mentally different.

Eclipse and IntelliJ IDEA respond to a programmer’s com-
pletion request (a keyboard shortcut such as ctrl+space) 
by deducing what tokens “might apply” in the current syn-
tactic context. Here, the tools are primarily guided by Java 
programming language semantics. For example, both 
Eclipse and IntelliJ IDEA respond to a completion request 
by parsing available source code and creating a short list of 
expected token types. If this list contains, say, a reference 
type, the tools use the rules of the type system to add a list 
of currently defined type-names to the list of completions. 
Similarly, if a variable is expected, the tools use names visi-
ble in the symbol table. Eclipse and IDEA implement dozens 
of these “syntactic and semantic rules” for various classes 
of syntactic constructs. As a final step, both tools rank the 
completions with a collection of apparently hand-coded 
heuristics.

Our approach is complementary. Rather than using lan-
guage semantics and immediate context, to guess what 
might apply, our n-gram language model captures what most 
often does apply. Our approach offers a great deal more flex-
ibility and it also has the potential to be much more precise: 
the space of commonly used completions is naturally far 
smaller than the space of “language-allowed” completions. 
Further, our approach can enhance (or order) semantically 
informed suggestions and completions. It is noteworthy 
that perhaps some of the strongest evidence for the “natu-
ralness” of software, though, is how well our completion 
prototype functions in spite of not using semantic information.

There are approaches arguably more advanced than those 
currently available in IDEs. The BMN completion algorithm 
of Bruch et al.8 focuses on finding the most likely method 
calls likely to complete an expression by using frequency of 
method calls and prior usage in similar circumstances. We 
propose a broad vision for using language models of code 
corpora in software tools. Our specific illustrative comple-
tion application has a broader completion goal, completing 
all types of tokens, not just method calls. Later, Bruch et al.7 
lay out a vision for next-generation IDEs that take advantage 
of “collective wisdom” embodied in corpora and recorded 
human action. We enthusiastically concur, and suggest the 
use of language models from NLP to capture this wisdom.

Robbes and Lanza42 compare a set of different method-
call and class-name completion strategies, which start with 
a multi-letter prefix. They introduce an approach based 
on history and show that it improves performance. Our 
approach can complement history-based approaches by 
adding a language model. Han et al.14 uses Hidden Markov 
Models (HMM) to infer likely tokens from abbreviations. 
They make use of a dynamic programming trellis approach 
for back-tracking and suggestion. Their HMM is, in fact, a 
language model, but the paper does not describe how effec-
tive it is or how well it would perform for completion tasks 
without user-provided abbreviations.

Jacob and Tairas19 used n-gram language models for a dif-
ferent application: to find matching code clones relevant to 
partial programming task. Language models were built over f  http://macbeth.cs.ucdavis.edu/CACHECA.
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6. FUTURE DIRECTIONS
Statistical models estimated over large code corpora hold 
tremendous promise in software engineering applications. 
We list some applications below.

6.1. Improved language models
In this paper, we exploited a common language model 
(n-grams) that effectively captures local regularity. There are 
several avenues for extension. Existing, very large bodies of 
code can be readily parsed, typed, scoped, and even subject 
to simple semantic analysis. All of these can be modeled 
using enhanced language models to capture regularities 
that exist at syntactic, type, scope, and even semantic levels.

There is a difficulty here: the richer a model, the more 
data is needed to provide good estimates for the model 
parameters; thus, the risk of data sparsity grows as we enrich 
our models. Ideas analogous to the smoothing techniques 
used in n-gram models will have to be adapted and applied 
to build richer models of software corpora. In follow-on 
work, researchers have exploited type models,38 syntactic 
models,1, 35 scope,49 and simple data flow information,41 for 
various tasks. Recent work has also explored deep learning 
approaches to modeling code.50 Regularities in syntax, type, 
scope, and even semantic properties can be captured in 
models and exploited. For example, Campbell et al.10 diag-
nose syntax error locations by exploiting the fact that lan-
guage models trained on working code will be surprised by 
syntax errors. Indeed there are a great many potential appli-
cations to software engineering tasks, some of which we dis-
cuss further below.

6.2. Language models for accessibility
Some programmers have difficulty using keyboards, because 
of RSI or visual impairment. Prior work explored using speech 
recognition (e.g., Refs.3, 4, 18) for assistance. However, due to 
fairly high recognition error rates, adoption has been lim-
ited.33 None of the published approaches make use of a sta-
tistical language model trained on specific code corpora. The 
use of a code-specific language model will surely reduce error 
rates, as in conventional speech recognition engines. Much 
development work occurs in a maintenance or re-engineering 
context, where ample data is available for model estimation. 
Even when only a small amount of relevant code exists, lan-
guage model adaptation,5 and cacheing49 could be applied.

6.3. Applications of machine translation
Consider the task of summarizing a fragment of code (or 
change to code) in English. Consider also the approximate 
reverse task: finding/retrieving a relevant fragment of code 
(e.g., method call) given an English description. We draw an 
analogy between these two problems and statistical natural 
language translation (SNLT    ). Code and English are two lan-
guages, and essentially both the above are translation tasks. 
SNLT   relies on access to an aligned corpus, which is a large 
set of sentences simultaneously presented in two or more 
languages (e.g., parliamentary proceedings, or Scriptural 
verses). Consider the problem of translating a Tamil sentence 
T to an English sentence E. SNLT   uses a simple Bayesian 
formulation to calculate the likeliest English translation; it 

clone groups (not entire corpora as we propose) and used to 
retrieve and present candidate clones relevant to a partially 
completed coding task.

Hou and Pletcher17 used context-specific API information 
in order to sort Eclipse code completions using static types. 
Users can filter out future completion proposals.

The “Naturalness” of Names in Code A line of work has 
been automatically evaluating the quality of entity names 
in code, asking “Do the names reflect the meanings of the 
artifacts, and if not, how could they be improved6, 27?” Work 
by Høst and Østvold15, 16 also concerns method naming: they 
combine static analysis with an entropy-based measure over 
the distribution of simple semantic properties of methods 
in a corpus to determine which method names are most dis-
criminatory, and they use it to detect names whose usage is 
inconsistent with the corpus.

Summarization and Concern Location A line of work on 
code summarization9, 47, 48 uses semantic properties inferred 
by static analysis, rather than the “natural” regularities of soft-
ware corpora capturable in statistical models; it is complemen-
tary to ours: properties derived by static analysis (as long as they 
can be done efficiently, and at scale) could be used to enrich 
statistical models of large software corpora. Another line of 
work seeks to locate parts of code relevant to a specified con-
cern (e.g., “place auction bid”), which could be local or cross-
cutting, based on fragments of code names,44 facts mined from 
code,40 or co-occurrence of related words in code.45

NLP and Requirements Researchers have studied the 
use of natural language in requirements engineering: “Can 
we utilize natural language specifications to automatically 
generate more formal specifications, or even code?”25, 26, 43 
Some of these approaches make use of NLP tools like pars-
ers and part-of-speech taggers. Our approach considers 
instead the “naturalness” of code, as embodied in statisti-
cal models built from large corpora of artifacts; however 
we also consider (in future work) the possibility of using 
aligned (code/natural language) corpora for tasks such as 
code summarization or code search, which could be viewed 
as translation tasks.

Software Mining Work in this very active area51 aims to 
mine useful information from software repositories. Many 
papers can be found in MSR conference series at ICSE, and 
representative works include mining API usages,12, 30 pat-
terns of errors,21, 29 topic extraction,28 guiding changes,52 and 
several others. The approaches used vary. We argue that the 
“naturalness” of software provides a conceptual perspective 
for this work, and also offers some novel implementation 
approaches. The conceptual perspective rests on the idea that 
useful information is often manifest in software in uniform, 
and uncomplicated ways; the implementation approach indi-
cates that the uniform and uncomplicated manifestation of 
useful facts can be determined from a large, representative 
software corpus in which the required information is already 
known and annotated. This corpus can be used to estimate 
the statistical relationship between the required informa-
tion and readily observable facts; this relationship can be 
used to reliably find similar information in new programs 
similar to the corpus. We explain this further in future work 
(Sections 6.3 and 6.4).
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maximizes the right hand size of this equation over all pos-
sible English sentences E:

For a given T, the denominator is constant, and we just 
maximize the numerator. Within the numerator, the condi-
tional distribution p(T|E) is estimated using E-T pairs in an 
aligned corpus; p(E) is provided by a language model esti-
mated over an English corpus. The formulation is clearly also 
applicable for the reverse translation task. The analogy to 
code summarization/retrieval tasks is evident: given a code 
fragment C, produce an English summary E; or, conversely, 
retrieve a code fragment C given an English query E. For the 
former (summarization) task, we need the conditional distri-
bution p(C|E), and a language model p(E).

First, how do we estimate the conditional distribution 
p(C|E)? Several promising sources of aligned (English/
Code) corpora exist. Consider the version history of a proj-
ect. Each commit potentially offers a matched pair of a 
log message (English), and some changes (Code). Second, 
many in-line comments could be matched with nearby 
code.2 Stack-overflow posts (both questions and answers) 
often include closely-related code and text. Next, con-
sider p(E): the relevant (natural language) corpora con-
cerning the code can be found in project-associated English 
language text, for example, code comments, documents, 
bug reports, mailing-list discussions, etc. We can thus esti-
mate p(E). These p(C|E) and p(E) models can then select 
maximally likely code fragments given English descrip-
tions as shown above; the reverse task would use p(E|C) 
and p(C) models, which are also analogously estimable. 
This approach could use semantic properties of code, as 
well; however, unlike Buse and Weimer,9 who document 
the semantics of each change in isolation, we would use 
statistics of semantic properties over large aligned code/
text corpora.

Porting between languages or dialects is another poten-
tial application; Nguyen and colleagues34, 36, 37 have exploited 
the availability of cross-platform applications in Java and 
C#, with method-level alignments, to train translation mod-
els, and learn API mappings. Karaivanov et al.20 have fol-
lowed the above work in a similar vein.

6.4. Software tools
We hypothesize that the “naturalness” of software implies 
a “naturalness” of deeper properties of software, such as 
those normally computed by powerful but expensive soft-
ware tools; we hypothesize that (because programs tend to be 
repetitive) deeper, more semantic properties of programs are 
also manifest in programs in superficially similar ways. More 
specifically, we hypothesize that semantic properties are usu-
ally manifest in superficial ways that are computationally 
cheap to detect, particularly when compared to the cost (or 
even infeasibility) of determining these properties by sound 
(or complete) static analysis. If feasible, one can leverage this 
notion to build simple, scalable, and effective approxima-
tions in a wide variety of settings, as we now describe.

Consider a very general formulation of a software tool 

that computes a function f over a system s, drawn from a 
domain of systems S thus:

f  : S        →   D

where the range D represents a fact derived by analysis, for 
example, a may-alias fact, a mined rule (e.g., an API proto-
col), a error message (e.g., buffer-overflow warning), or even 
a new, transformed version of the input system s ∈ S. Let us 
assume that the function f is, in general, expensive or even 
infeasible to calculate, and is thus subject to approximation 
error and calculation delays in practice. We reformulate this 
problem by estimating f using an alternative formulation, f̂ , 
which chooses the most likely value of f (s), given an easily 
calculated and readily observed set of evidence features e1(s),  
e2(s), . . . Features ei(s) are “symptoms”; they are not deter-
ministic, conclusive proof that f (s) has some property φ, 
but nevertheless provide varying levels of justification for a 
probabilistic belief in φ.

This view has a Bayesian formulation. Denote the prob-
ability that d holds of system s, given the observed bits of evi-
dence ei(s):

The distributions on the right-hand side can be estimated 
over large corpora. Given a specific system, the denominator 
is a constant. For the numerator, the prior distribution p(d), 
over the output domain of f, can be estimated from obser-
vations in the corpus (e.g., “How often do buffer overflow 
errors occur?” “How often do different protocol patterns 
occur?” etc.). In the absence of such information, a uninfor-
mative (uniform) prior could be chosen.

Next, we estimate the strength of the association (likeli-
hood) between the conclusion d and the observed features 
e1(s) . . . en(s) in the corpus. p(e1(s), e2(s), . . ., en(s)|d) can be 
viewed as the conditional frequency of the observation of 
features in the corpus when the output domain property d 
holds. This term requires the availability of a corpus anno-
tated with property d. Even in cases where d must be manu-
ally annotated, we argue that such corpora may be well-worth 
the investment (by analogy with the Penn Tree Bank32) and 
can be constructed using volunteer open-source community, 
and perhaps market mechanisms like the Mechanical Turk.22

Finally, assuming suitable models to enable calculation 
of p(d|s) can be estimated, we write the alternative, probabi-
listic function  f̂  to choose the most likely d:

We hasten to add that this Bayesian formulation is just to 
provide an intuition on how corpus-based statistics can be used 
in a principled way to aid in the construction of approximating 
software engineering tools. In practice, a machine learning for-
mulation (such as decision-trees, support-vector machines, or 
even simple regression models) might prove more expedient.

Raychev et al.41 demonstrated this idea, with an applica-
tion to guessing useful names of variables in obfuscated 
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code. Variable names are chosen by programmers to repre-
sent semantic properties; a corpus of code with clear names 
can be used for training. Using very simple data-flow prop-
erties (readily derivable from syntax) as predictive features, 
and a log-linear formulation of the above idea, they were 
able to guess helpful variable names.

7. CONCLUSION
Although Linguists (sometimes) revel in the theoretical com-
plexities of natural languages, most “natural” utterances, in 
practice, are quite regular and predictable and can in fact be 
modeled by rigorous statistical methods. This fact has revo-
lutionized computational linguistics. We offer evidence sup-
porting an analogous claim for software: though software in 
theory can be very complex, in practice, it appears that even a 
fairly simple statistical model can capture a surprising amount 
of regularity in “natural” software. This simple model is strong 
enough for us to quickly and easily implement a fairly powerful 
suggestion engine that already improves a state-of-the-art IDE. 
We also lay out a vision for future work. Specifically, we believe 
that natural language translation approaches can be used for 
code summarization and code search in a symmetric way; we 
also hypothesize that the “naturalness” of software implies a 
sort of “naturalness” of deeper properties of software, such as 
those normally computed by powerful, traditional software 
analysis tools. These are challenging tasks, but with poten-
tially high pay-off, and we hope others will join us in this work.
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