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Abstract. Applications that are distributed, fault tolerant, or perform
dynamic load balancing rely on redirection techniques, such as network
address translation (NAT), DNS request routing, or middleware to han-
dle Internet scale loads. In this paper, we describe a new connection
redirection mechanism that allows applications to change end-points of
communication channels. The mechanism supports redirections across
LANs and WANs and is application-independent. Further, it does not
introduce any central bottlenecks. We have implemented the redirection
mechanism using a novel end-point control session layer. The perfor-
mance results show that the overhead of the mechanism is minimal. Fur-
ther, Internet applications built using this mechanism scale better than
those built using HTTP redirection.

1 Introduction

Providing Internet services is increasingly difficult. Popular web sites must effec-
tively handle current user request loads and prepare for increased future loads
as their site gains popularity and the Internet audience, in general, grows. Ex-
cessive down times or user delay are unacceptable as Internet users will quickly
turn elsewhere for their content.

To handle typical web loads, Internet server solutions must provide sub-
stantial computational power, I/O throughput and network bandwidth. This
is accomplished either by using a high-end server or by clustering commodity
workstations. Clustering is by far the most popular solution due to its cost ef-
fectiveness and potential for scalability. One of the main challenges with server
clusters is distributing load while exporting a single name. Distributing load in-
creases scalability. A single, easily remembered name for the service is necessary
for end-user usability. Connection redirection, which maps the exported service
name to a single server in the cluster, is the primary way to distribute load while
still presenting a single name to the user.
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Ideally, a redirection mechanism should be able to redirect requests to servers
that are distributed in a wide area network and thereby allow servers to cope
with network congestion and to exploit geographical, temporal and other locality
properties for load balancing. Since popular server clusters must scale to millions
of simultaneous requests, redirection mechanisms should not introduce any bot-
tlenecks or failure points. A server cluster that provides short, predictable client
latencies increases user-perceived quality [4]. Redirection mechanisms, thus, must
allow servers to smoothly adapt to dynamic conditions such as flash crowds or
machine fajlures. Finally, redirection mechanisms must be compatible with ex-
isting Internet protocols, incrementally deployable as sweeping changes to the
Internet’s infrastructure are unrealistic, and transparent so that existing appli-
cations, such as web and ftp servers, can take immediate advantage of them.

Existing applications use many techniques [3,6,8,13] for dynamically redi-
recting connections: among these are application-layer protocols, name resolution
manipulation, and network packet rewriting. Each solution varies in its client
transparency, responsiveness to dynamic conditions, performance, and scalabil-
ity. DNS redirection is transparent, but only provides coarse load balancing [6]
and incurs increased lookup delay [15]. HTTP redirection is scalable, but not
application independent. Network packet rewriting is fast and transparent, but
limits clustering to servers within a local area network. Also, packet rewriters
may become a central point of failure.

In this paper, we present a novel connection-time redirection mechanism,
called Redirectable sockets (RedSocks). RedSocks adds a redirection operation
to the communication channel API that allows a server to redirect channels
as needed. During periods of contention, a server sheds load by invoking this
operation. RedSocks can redirect communication channel end-points among both
LAN and WAN separated servers. This provides servers with a flexible way
to respond to network congestion. It is a protocol-based solution that aims at
providing a general, application independent redirection facility. Unlike network
packet rewriting, RedSocks only requires a single packet manipulation to redirect
communication, so it does not introduce a chokepoint. RedSocks is backwardly
compatible with client applications making it incrementally deployable.

In Section 2, we describe the redirect operation and give examples of its
utility. Next, we present our implementation, which is highlighted by our novel
session-layer protocol, called end-point operation protocol (EOP), that provides
communication channel end-point control. In Section 4, we compare RedSocks
directly to HT'TP redirection and show a significant reduction in server redirec-
tion latency. In Section 5, we discuss related redirection mechanisms. Finally, we
discuss future research directions.

2 Redirectable Sockets

Redirectable sockets provides a communication abstraction suitable for use in
a variety of server architectures. In this section, we discuss the semantics and
usage of RedSocks.
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Fig. 1. Redirect end-point B to C

2.1 Definition

Our approach is to provide a primitive, redirect, that allows applications to
redirect communication channels at connection time. We describe the semantics
of a redirect system call through a simple example.

As shown in Figure 1(a), a communication channel exists between two nodes,
A and B. The application at B then executes redirect in order to change the
“B” end-point of the channel to C (see Figure 1(b)). C may define an end-
point at A, B, or at a different host. The redirect system call creates a new
channel between A and C, and removes the channel between A and B as shown
in Figures 1(c)—(d).

There are two ways to handle the request made by A in Figure 1(b). B has
the option to send a response to the request y during the redirect system call
(See Below). However, if B does not, then A must resend its previous request.

s=socket( SOCK_EOP_STREAM ); s = socket( SOCK_EOP_STREAM );
accept(); REDO:
if (earlyRedirect()) send(s, request);

redirect(s, NULL, endPointI D);

if (recv(s, response) <0
recv(s, request); ( (s resp ) )

response = process(request); if (errno == EREDO)
) : goto REDO;
if (lateRedirect()) _ reportError(errno);
redirect(s, response, endPointl D); exit(1);
else }
send(s, response);
(a) Server (b) Client

Fig. 2. RedSocks Sample Psuedo-Code.

2.2 Usage

An application can use the redirect system call to perform the redirect opera-
tion. This system call has the following general form: redirect(data, EndPointID).
The redirect operation first ensures that the data, if given, is delivered. Next,



the socket end-point belonging to the caller of the redirect system call is redi-
rected to EndPointID. For TCP sockets, EndPointID is specified with an IP
address, port number pair.

Figure 2 gives psuedo-code that models how client/server applications could
directly incorporate RedSocks. The bold code indicates RedSocks specific changes
to the typical client/server code. The main responsibility of the client is to han-
dle a new error code, EREDO. EREDO is used to distinguish whether or not
the server sends a response to the client in the redirect system call. If it does
not, the client must “resend” its last request. We present a means to relieve the
client application of this responsibility in [10].

3 Implementation

We have implemented RedSocks in the Linux 2.4.16 kernel, which implements
BSD sockets that conform to version 4.4BSD.

3.1 Design Issues

The first issue in adding operations on communication end-points, such as redi-
rect, is choosing the OSI model layer to enhance. The four choices are the net-
work, application, transport, and session layers. At the network layer, communi-
cation end-points are defined by host addresses. Thus, network layer redirection,
such as Mobile IP [14], globally applies to all the host’s communication chan-
nels. Effectively load-balancing Internet services requires redirecting individual
requests, so this type of redirection is often too coarse-grained. Application layer
solutions are not transparent To use such a solution, applications must agree on
an application protocol, such as HT'TP. Also, application layer protocols are more
expensive as processing each message requires at least two context switches.?
Application end-points are available at the transport layer and it would seem a
natural extension to perform the redirection operation here. Snoeren et al. [17,
16] use the transport layer to support mobile host migration and fault tolerance
for a server cluster. We feel that redirection is a higher level operation that does
not coincide with the well defined functions of the transport layer: application
end-point addressing, segmentation and assembly, connection control, flow con-
trol and error control. In general, end-point operations may require knowledge
about sets of communication channels that decisively fall outside the scope of
the transport layer. At the session layer, the only objects one has to operate
on are communication end-points. According to the OSI, the session layer “is
the network dialog controller” that “establishes, maintains, and synchronizes
the interaction between communicating systems.” Sychronization is key in redi-
recting end-points of communication channels. With this in mind, we created a
session layer protocol, EOP, to handle dynamic operations on communication
end-points.

3 A context switch occurs at the arrival of a message, at the departure, and additonal
context switches can occur during the protocol processing of the message.
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3.2 Architecture

Figure 3 illustrates our layered architecture. The arrows indicate functional de-
pendencies where data flows through the formal parameters and return values.
We defer discussion of the application layer to [10].

End-point Operation Protocol. EOP is a session layer protocol that wraps
transport layer data with an EOP header in order to manage end-point move-
ment for the lifetime of the associated communication channel. When end-
point movement is required, EOP invokes several functions in the EOP layer
on the client and the server to coordinate and accomplish redirection. The EOP
header triggers redirection on the remote end-point, synchronizes activity, and
exchanges redirection arguments.
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Fig. 4. The EOP Header

We use a simple 12-byte EOP header (see Figure 4) that contains a 16-
bit opcode to specify the current operation. The two operations we use are
normal and redirect. To specify the target of a redirect operation we use two
parameters: one 16-bit parameter indicating the port number and the other 32-
bit parameter indicating the destination IP address. The 32-bit slen field records
the size of the user message and is used to delineate messages (described further
in the transport layer discussion next).

Figure 5(a) shows the time flow diagrams for connection-time and in-stream
redirect operations. After connecting to B, A sends its initial request. B uses
the redirect system call to redirect requests to C. At A, EOP responds to the
redirection request by closing the connection to B, opening a new connection to
C, and then returning control to the client. Further requests, possibly including
the previous request if B did not send a response with its redirect, are sent
directly to C. At this point in time, B is fully divorced from A. RedSocks can also
be used as an instream redirection mechanism where requests are idempotent or
the servers are sharing application state via an alternative method. Figure 5(b)
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Fig. 5. Time line for EOP packet flow

gives the time flow diagram before, during, and after such a redirection. Its flow
is very similar to that depicted by Figure 5(a).

Transport Layer. Linux 2.4.15 provides a well-defined interface for the TCP
layer. However, we encountered two difficulties in building our session-layer.
The first difficulty is due to the way the network subsystem is optimized. At the
session layer, Linux assumes the data to be sent lives in user space, but we need
to generate our EOP headers in kernel space. Therefore, we had to modify TCP
to handle kernel generated data and use a separate eop_send call to deliver it.

Protocol headers encapsulate data packets and convey information on how
to process the data in the corresponding layers. However, TCP transparently
combines data packets and provides a streaming abstraction of the data. Thus,
TCP effectively destroys the association between protocol headers and their data
for upstream layers. Our second difficulty is that we needed a way to maintain
or rebuild this association. We use the slen field in Figure 4 for this purpose.
The designers of the Stream Control Transmission Protocol (SCTP) describe
this difficulty in RFC2960 and propose SCTP as a solution.

4 Experiments

We ran our overhead experiments (see Section 4.1) on four 400Mhz dual-processor
Pentium IIT machines where each has 256 MB of RAM, two 18GB hard drives,
and a 100 Mbps Ethernet network card. These machines are connected via a
100 Mbps hub. Each machine ran Linux 2.4.16. In these experiments, data was
collected for request/response sizes between 100 bytes and 32K, at 100 byte
intervals. Each data point in the graphs represents the average over 100 runs.
For our scalability measurements, we used one client machine, located at the
University of California at Davis, of the above type and a small server cluster,
located at Vanderbilt University in Tennessee. The server cluster consisted of two



800Mhz AMD machines with 256 MB of RAM and 100 Mbps Ethernet network
cards. Both campuses are connected via Internet II.

4.1 Overhead Measurements

To better understand the overhead of using RedSocks when redirection is not
performed, we measured request-to-response latency from a single client and
single server. This effectively measures pure send and receive overheads. For
sending and receiving packets, RedSocks incurs a 6.5% average overhead with
the Nagle algorithm enabled and a 1.5% average overhead with it disabled.*
The behaviour of RedSocks can be mimicked with traditional socket system
calls at the application layer. A client can terminate communication with a
host by calling close on the socket and then re-initiate communication with a
different host via calls to socket and connect. This solution does not require
the use of an EOP header, but fails to provide a number of advantages such as
client transparency, server-side load balancing control, and dynamic adaptation.
Nevertheless, it provides a good baseline against which to compare RedSocks.
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Fig. 6. Overhead of sending and redirection

We compare the time it takes to complete two consecutive client requests.
With RedSocks, the client sends a request to a host that services the request.
In addition, the host redirects its connection end-point to another server that
handles the second request. The traditional socket scenario is the same except the
client manually reconnects to a host statically specified in the program. We give
the transaction time for varying request/response sizes in Figure 6. RedSocks is
0.84% faster when the Nagle algorithm was disabled (see Figure 6).

4.2 Comparing HTTP and RedSocks Redirection latency

In these experiments, the client generates requests to Server 1. Server 1 redirects
the requests to Server 2 which handles them. We modified Lynx 2.8.5 to generate
user requests in a manner similar to flood®. On the servers, we ran either standard

* Interested readers can refer to [10] for more details.
® http://httpd.apache.org/test/flood/



Apache 1.3.22 or our RedSocks-enabled Apache 1.3.22 depending on whether we
were measuring HTTP redirection or RedSocks. We measured server redirection
latency when varying the number of requests and file sizes. Server redirection
latency is measured from the time the client connects to the time the redirect,
or HTTP redirection, operation completes. Figure 7 shows a representative
subset of these results.
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Figure 7(a) gives the average server redirection latency of the Apache web
server using HTTP redirection for differing numbers of requests. The results of
this graph are counter-intuitive. One would expect that latency would increase
when the number of requests are increased. However, observe the latencies for
1k and 2k files. While they are higher than the latencies seen in the correspond-
ing RedSocks results (see Figure 7(b)), they do not increase with the number of
requests. Instead, latency increases with file size. In analyzing this phenonemon,
we discovered an undesirable trait of HT'TP redirection: its performance is corre-
lated to the performance of the clients. Thus, a poorly performing client adversely
impacts server scalability as witnessed in Figure 7(a).

The explanation of this lies in the steps taken to perform redirection in both
mechanisms. For RedSocks, the steps are to (1) accept the connection and
(2) redirect the request. Both of these steps are efficient and neither the file
sizes or numbers of requests for our tests effected server redirection latency (see
Figure 7(b)). For HTTP redirection, the steps are to (1) accept the connection,
(2) read the request, (3) create an HT'TP redirection response, and (4) send the
response. The time required to generate the HTTP redirection response adds a
constant increase to server redirection latency over that incurred by RedSocks.
The key to the non-scalable increase in server redirection latency experienced
by HTTP redirection is that it must read the request (step 2) and read is a
blocking system call. Usually, the client is responsive and immediately sends its



request resulting in the server having no blocking delay. However, the effects of
an unresponsive client can be seen in Figure 7(a) where the client bogs down as
file sizes increase. This effect is not specific to HT'TP redirection, but occurs in
any mechanism that must read a request before redirecting, a common scenario
in content-aware redirection.

5 Related Work

DNS can be used to map a single hostname onto multiple hosts [5]. When queried
about a name, a modified DNS server returns different IP addresses according
to its selection policy. DNS is transparent to both clients and servers making
it easy to deploy. It is also convenient because clients must do a DNS lookup
to contact Internet services anyway. Unfortunately, DNS-based redirection is
coarse-grained, increases load on DNS, and may make poor load-balancing de-
cisions [15]. Several server-based approaches [2,9] use HTTP redirection, which
allows any server to redirect its connections, but is application-specific and has
higher overhead. Dispatcher-based mechanisms, such as Cisco’s Local Director,
Linux’s netfilter, TCP splicing [7] and MagicRouter [1], employ network packet
rewriting for both connection-time and in-stream connection redirection. Packet
rewriting provides a transparent way to build distributed servers, but at a price:
it requires a proxy or router to interpose itself between a connection’s end-points
and actively manipulate packets. In [11], Hunt et al. introduce TCP handoff (also
used in LARD [13]), as part of a content-based load distribution scheme, that
avoids bi-directional packet rewriting. However, all incoming packets must still
pass through a node, which may become a bottleneck. For a more extensive
review of related work, please refer to [10].

6 Conclusion

Building scalable, highly-available web servers requires mechanisms that support
multiple machines cooperatively handling requests for a service. RedSocks is a
new mechanism introduced to solve some of the issues in building distributed
architectures that transparently balance load across servers. With RedSocks, one
can manipulate the end-points of the communication. This solution improves
upon previous ad hoc mechanisms for balancing load among servers in that it
is scalable, fine-grained, and transparent to the client. In future work, we will
explore extensions, such as support for fault tolerance and lazy redirection, which
allows a server to redirect a connection that was just redirected to it.
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