
Automated Transplantation of Call Graph and
Layout Features into Kate

Alexandru Marginean, Earl T. Barr, Mark Harman, and Yue Jia

UCL, Department of Computer Science, CREST Centre

Abstract. We report the automated transplantation of two features
currently missing from Kate: call graph generation and automatic layout
for C programs, which have been requested by users on the Kate devel-
opment forum. Our approach uses a lightweight annotation system with
Search Based techniques augmented by static analysis for automated
transplantation. The results are promising: on average, our tool requires
101 minutes of standard desktop machine time to transplant the call
graph feature, and 31 minutes to transplant the layout feature. We re-
peated each experiment 20 times and validated the resulting transplants
using unit, regression and acceptance test suites. In 34 of 40 experiments
conducted our search-based autotransplantation tool, µScalpel, was
able to successfully transplant the new functionality, passing all tests.

1 Introduction

We recently introduced a search based technique for automated software trans-
plantation [2,7]. Guided by dependence analysis and testing, our approach uses a
variant of genetic programming to identify and extract useful functionality from a
donor program, and transplant it into a (possibly unrelated) host program. We im-
plemented our approach as a tool called µScalpel, which is publicly available [1].

In this challenge paper, we illustrate the way in which realistic, scalable, and
useful real-world transplantation can be achieved using µScalpel. We apply our
tool to the SSBSE 2015 Challenge program Kate1, a popular text editor based on
KDE. Its rich feature set and available plugins make it a popular, lightweight IDE
for C developers. We perform two automated transplantations using µScalpel.
In the first one, we transplant call graph drawing ability from the GNU utility pro-
gram cflow, to augment Kate with the ability to construct and display call graphs.

This is a useful feature for a lightweight IDE, like Kate, and would clearly be
nontrivial to implement from scratch. Using our search based autotransplantation,
µScalpel, the developer merely needs to identify the entry point of the source
code in the donor program (cflow in this case) and the tool will do the rest; ex-
tracting the relevant code, matching names spaces between host and donor and ex-
ecuting regressions, unit and acceptance tests. Like much previous work on genetic
programming [12], our approach relies critically on the availability of high quality
test suites. We do not directly address this issue in the present paper, but believe
1 http://kate-editor.org

http://kate-editor.org


2

that existing achievements in Search Based [5] and other [4] test data generation
techniques will help us to ensure that this reliance is reasonable and practical.

Our second transplantation incorporates a pretty printer for C, which Kate
only partially supports and which its users have requested. At the time of writing,
we deployed a new version of Kate that incorporates these features. We hope to be
able to report on the uptake of this ‘genetically improved’ Kate at the conference.

Our work is closely related to recent achievements in genetic improvement,
which have been able to dramatically speed up real world systems [9,14,15], port
between languages [8], balance memory consumption and execution time [16],
reduced energy consumption [3,13] and fix bugs [10]. Most closely related to
our approach is work on auto-specialisation using transplantation [11] and grow
and graft genetic improvement [6]. Whereas auto-specialisation transplants from
different versions of the same system (or closely related systems) and grow and
graft transplants newly grown simple features, µScalpel transplants large-scale
features (and subsystems) from one or more donors into an unrelated host.

2 The µScalpel Transplantation Framework
We presented a framework for transplanting a feature between two unrelated
systems and a tool to implement our approach [1] in our recent ISSTA paper
[2], so we provide merely a summary here to make the paper self-contained.
Given a host H program that is lacking a feature of interest, a donor program
D, that implemented the feature, and a lightweight annotation system, our tool,
µScalpel, attempts to autotransplant the feature from D into H. The feature
of interest in the donor is called the Organ. From the entry of the donor, there
are one or more path that reaches the Organ Entry point, called veins.

Our approach uses Genetic Programming (GP), augmented by static analysis,
for extracting, configuring, and transplanting the organ into the host environment.
GP explores combinations of statements on the vein, and in the host–donor
variable mappings, that will enable the organ to execute in the host environment,
guided by testing. The first stage of our approach uses context insensitive slicing
on the call graph of the donor program to construct a map, with the key being
the variables available in the vein, and the values being the variables in scope at
the implantation point in the host [2]. GP is used to transplant the feature in
the host system, having the host–donor map, and the code base represented by
these context insensitive slices. The search space has two dimensions: the variable
mapping and the statements available to form the transplant itself. The tool that
implements out approach, µScalpel, is publicly available [2].

3 Applying Autotransplantation to Kate
We chose two popular, real world systems, as the donor programs: GNU cflow2,
and GNU Indent3. The former generates call graphs for C programs, a feature
that is missing from Kate; the latter pretty prints C source files, with far fewer
restrictions than Kate’s existing built-in indentation functionality. Kate’s existing
2 http://gnu.org/software/cflow 3 http://gnu.org/software/indent

http://gnu.org/software/cflow
http://gnu.org/software/indent


3

indentation feature fails to wrap a line that is too long, for example. It simply adds
space or tabs in a programming language independent manner, whereas GNU’s
Indent exploits language awareness to provide far better formatting functionality.

µScalpel requires user to provide an implantation point in H, and the entry
point of the feature in D. We chose one of the Kate plugins as the implantation
point. We start from the time date plugin template4, and annotate the entry point
in Kate, in the function ‘void TimeDatePluginView:: slotInsertTimeDate()’
of the plugin. This function is called every time the user selects the menu
element corresponding to the current plugin. We chose this point as the im-
plantation point for allowing the user to chose whenever wants to generate the
call graphs. The annotation added in the host is: ‘void TimeDatePluginView::
slotInsertTimeDate(){ /* IP */’ .

For the cflow donor, the desired functionality is to transplant the tree form
of the call graphs. Thus, we label the function ‘tree_output()’ as the organ
entry in the donor system. The organ generates the call graph of a C program
and displays it in the tree format (option ‘-T’ from cflow). The annotation is:
‘void tree_output(){ /*OE*/’. For the Indent donor, the desired functionality
is to enable Kate to completely format a C source file. We want to format the
current opened document in the Kate’s main page. Thus, we label the func-
tion ‘indent_single_file()’ as the organ entry point. This function reformats
the source file, according to the settings of GNU Indent. The annotation is:
‘exit_values_ty indent_single_file(BOOLEAN using_stdin){/*OE*/’. The
developer need only provide µScalpel with these simple annotations and suitable
test cases and the reminder of the transplantation process is entirely automated.

We used several different test suites to validate our transplant. First, we
execute the original regression test suite, available with Kate. Since this test suite
does not execute the organ, we augmented it with test cases specifically aimed at
executing the organ. Second, we generated an acceptance test suite, aimed at
checking the transplanted functionality when executed in the host. As with all
approaches to GP, the test cases are used to guide the search for suitable code.

Provision of these test cases remains the responsibility of the software engineer.
Such tests, or a large subset thereof, would be likely required by a human
transplantation process in any case, so this is not a significant additional burden.
Furthermore, even were such costs attributed to the autotransplantation process,
it would be likely easier, in many cases, to define suitable test cases to check a
transplant than it would be to generate one from scratch while ensuring it is
sufficiently tested. In order to estimate the human cost, we recorded the elapsed
developer time required to construct the isolation, acceptance, and regression++
test cases that are specifically required to validate the transplantation, thereby
providing an upper bound on human effort. Our estimation for annotations and
the test suites is one hour for both of the transplants.

For all our test suites we provide coverage information. Tab. 2 shows the
results of our tests for both donor programs. We also manually generated the
ice-box test suite, used by the GP in the process of transplanting the feature.

4 https://techbase.kde.org/Development/Tutorials/Kate/KTextEditor_Plugins

https://techbase.kde.org/Development/Tutorials/Kate/KTextEditor_Plugins


4

4 Experiments and Results
We seek to answer three research questions. RQ1) Can we transplant the two
desired features into Kate, without breaking the original functionality of Kate?
RQ2) Do the transplanted features (organs) provide the desired functionality
inside Kate? RQ3) What is the computational effort required by automatic
transplantation? We repeat each of the transplantation experiments 20 times,
executing µScalpel on a Ubuntu 14.10 machine, 64-bit architecture, 16 GB
ram, and 8 cores processor.

Tab. 2 presents the number of runs in which for every test suite, all test cases
pass. We report the number of successful runs for the regression, augmented
regression, and acceptance test suites individually and also report the coverage
achieved by test cases (of the entire Kate system, and of just the transplanted
organ). This coverage data is that reported by the publicly available coverage
metric tool gcov. Tab. 2a shows the results of the test suites for cflow donor
transplant, while Tab. 2b shows the results of the test suites for Indent donor
transplant. For cflow, 16 out of 20 runs where unanimously successful, while for
Indent 18 out of 20 runs were unanimously successful.

We deem a transplantation attempt to be successful if (and only if) all the test
cases from the corresponding test suite passed. The row labelled ‘Unanimously’
reports the number of transplantation attempts in which all test cases passed in
all test suites. The line ‘Isolation’ reports the results of the isolation test suite,
which is used by the GP algorithm for evolving the organ (as opposed to being
used for valuation purposes).

Observe that even were we to find that automated transplantation was only suc-
cessful one a few of the 20 attempts, then this would be sufficient to demonstrate
the feasibility of autotransplantation in general. The testing process can be used
to validate any transplantation attempt, allowing the software engineer to discard
any and all failed attempts. As a result show, autotransplantation achieves a much
higher success rate than this, minimal, feasibility requirement. Overall, we have
evidence that autotransplantation is feasible for the popular real world system
Kate. We now turn to the specific research questions, we posed to answer them.

Table 1. Runtime data,
averaged over 20 runs.

Donor Time(min.)

Avg Std Dev

GNU cflow 101 31
GNU Indent 31 6

RQ1 Tab. 2 revels that for both of the transplants, all
the regression test cases passed. However, the organs were
not executed by the existing regression test suites, so we
manually augmented them to generate the regression++
test suites. Organ coverage for the regression++ test
suites is: 59% for cflow, and 58% for Indent. For cflow
17 out of 20 transplantation attempts passed all test in
these augmented test suites, while for Indent, 18 out of 20
pass all. Clearly one can never do enough regression testing, but these results pro-
vide release some confidence. In future work we plan to use automated search based
software testing [5] to further improve autotransplantation regression testing.
RQ2 For cflow 18 out of 20 transplants passed all acceptance tests, while
for Indent 19 out of 20 pass, giving confidence that µScalpel has successfully
transplanted code, such that the desired functionality is available to host program.



5

Table 2. Transplantation results. Figures marked with * exclude regression test cases
that failed before the transplantation (only one for Kate).

(a) GNU cflow Donor

Category Pass Rate Coverage (%)

All Organ

Unanimously 16 - -
Isolation 18 - -
Regression 20* 62 0
Regression++ 17 74 59
Acceptance 18 52 59

(b) GNU Indent Donor

Category Pass Rate Coverage (%)

All Organ

Unanimously 18 - -
Isolation 19 - -
Regression 20* 66 0
Regression++ 18 78 68
Acceptance 19 48 68

process_args(){
}
main(){

...
process_args();
indent_all();

}

indent_all(){
...
indent_single_

file();
...

}

(a) Indent Code

...
BOOL using_stdin = false;
exit_status = total_success;

...
for (i = 1; i < argc; ++i) {

char *optArg = argv[i];
...

input_files++;
...
in_file_names[input_files-1]

= optArg;
...

if (exit_status == total_success) {
...

exit_status=indent_single_file
(using_stdin);

...
}

(b) Indent Inlined Source Code

void graft_h264(...,
char * $_host_input, ...) { ...
BOOL $_main_using_stdin;
$_main_using_stdin = false;
$_main_exit_status = $_donor_total_success;
...
BOOL * $_process_args1_using_stdin1 = &

$_main_using_stdin;
...
$_global_input_files++;
...
$_global_in_file_names[$_global_input_files -

1] = $_host_input;
...
if ($_main_exit_status==$_donor_total_success){
BOOL $_indent_single_file_using_stdin_2 =

$_main_using_stdin;
return $_organ_entry_indent_single_file(

$_indent_single_file_using_stdin_2);
}

}

(c) Transplanted Source Code
Figure 1

Fig. 1. Transplant operation in cflow donor transplant. Code snippet from the begin-
ning of the graft. means function inlining; optArg is mapped to $_host_input;
means statement replacement under α — renaming; grayed statements are deleted.

RQ3 Tab. 1 reports the timing information for the transplants. On average,
transplanting the call graph feature from cflow took 101 minutes, while the layout
feature from Indent took 31 minutes. In less than 44 hours total time, we were able
to complete all 40 repetitions of the two experiments. The human effort required to
incorporate these two new features would surely have been considerably greater.

A Flavour for the Transplants Produced by µScalpel Fig. 1 provides
a flavour of the Indent transplant. Fig. 1a shows portion of the vein, identified
in the static slicing processing. The vein starts at the function main(), and
ends at organ entry; the function indent_single_file(). The vein contains
the function process_args(), which initialises globals, based on the command
line parameters originally used in the donor Indent. Fig. 1b shows the resulting
code after the inlining process. The brackets capture the code corresponding to
each original function. Fig. 1c shows the code transplanted into Kate by one of
the successful transplants. An α–renaming scheme is used to avoid namespace
conflicts within the host, and between the inlined functions.

Some organ statements must be removed, due to failed test cases or incorrect
binding to host variables. Some variables may even be unbindable, leading to



6

an uncompilable (or crashable) transplant. For example, the variables argc and
argv simply cannot be bound to host variables, because Kate has no concept
of ‘command line argument’. Fortunately, GP discovers such issues. It removes
the first for statement in Fig. 1b . The variable optArg is used for parsing the
command line parameters of Indent. This variable was mapped at the variable
$_host_input$, thereby correctly using input from Kate call graph computation.

5 Conclusions

We demonstrated that search based automated transplantation (a form of genetic
improvement) can be used to automatically transplant non-trivial features (that
are requested by users, but hitherto unimplemented by developers) into the large
real-world system Kate.

References

1. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: µscalpel. http://crest.
cs.ucl.ac.uk/autotransplantation/MuScalpel.html (2014)

2. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: Automated software
transplantation. In: ISSTA (2015), to appear

3. Bruce, B., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: GECCO 2015 (2015)

4. Cadar, C., Sen, K.: Symbolic execution for software testing: Three decades later.
CACM 56(2), 82–90 (2013)

5. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing (keynote). In: ICST (2015)

6. Harman, M., Langdon, W.B., Jia, Y.: Babel pidgin: SBSE can grow and graft
entirely new functionality into a real world system. In: SSBSE (2015)

7. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engi-
neering (keynote paper). In: WCRE (2013)

8. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: IEEE CEC (2010)

9. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. TEVC 19(1), 118 – 135 (2015)

10. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. SQJ 21(3), 421–443 (2013)

11. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement &
code transplants to specialise a C++ program to a problem class. In: EuroGP(2014)

12. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008)

13. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software
optimization for reducing energy. In: ASPLOS. pp. 639–652 (2014)

14. Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.C.: Managing per-
formance vs. accuracy trade-offs with loop perforation. In: FSE. pp. 124–134(2011)

15. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM TOG 30(6), 152:1–152:11 (2011)

16. Wu, F., Harman, M., Jia, Y., Krinke, J., Weimer, W.: Deep parameter optimisation.
In: GECCO 2015 (2015)

http://crest.cs.ucl.ac.uk/autotransplantation/MuScalpel.html
http://crest.cs.ucl.ac.uk/autotransplantation/MuScalpel.html

	Automated Transplantation of Call Graph and Layout Features into Kate
	Introduction
	The muSCALPEL Transplantation Framework
	Applying Autotransplantation to Kate
	Experiments and Results
	Conclusions


